Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028009(2023)

Oilseed Rape Yield Estimation Based on the WOFOST Model and Remote Sensing Data

tao Guo1,2, jingbo Wei2, and wenchao Tang1、*
Author Affiliations
  • 1Institute of Space Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
  • 2School of Information Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
  • show less
    Figures & Tables(13)
    Ground test plot
    LAI assimilation results of Jingzhou city in 2015
    Classification results of GF-1 WFV image in Yangxin county in 2019.(a) GF-1 WFV image of Yangxin county in April 2019; (b) classification results of GF-1 WFV images based on pyramidal bottleneck residual network
    Comparison of rape extraction results and statistical yearbook
    Comparison of rapeseed yield estimation results and statistical yearbook
    • Table 1. Study area and weather station locations

      View table

      Table 1. Study area and weather station locations

      Study areaWeather station location
      ZhongxiangN31°6′00″,E112°20′24″
      MachengN31°6′36″,E115°0′36″
      JianliN29°30′00″,E112°32′24″
      JiayuN29°35′24″,E113°33′00″
      JingzhouN30°12′36″,E112°5′23″
      YangxinN29°30′36″,E115°7′11″
    • Table 2. GF-1 WFV image information for model construction

      View table

      Table 2. GF-1 WFV image information for model construction

      Coverage areaNumber of images
      Jingzhou4
      Macheng2
      Zhongxiang2
      Wuxue2
      Jiayu4
    • Table 3. GF-1 WFV image information of Yangxin County for model validation

      View table

      Table 3. GF-1 WFV image information of Yangxin County for model validation

      Get timeGrowth period
      2015-01-22bolting stage
      2015-03-12flowering stage
      2016-02-03bolting stage
      2016-03-19flowering stage
      2018-02-06bolting stage
      2018-03-28flowering stage
      2019-01-17bolting stage
      2019-04-01flowering stage
      2020-01-29bolting stage
      2020-03-18flowering stage
    • Table 4. Data information of weather station in Jiayu county in the first 30 days of 2017

      View table

      Table 4. Data information of weather station in Jiayu county in the first 30 days of 2017

      YearDayMinimum temperature /℃Maximum temperature /℃Average air pressure /PaSunshine time /hRainfall /mmAverage wind speed /(m·s-1
      201715.29.8101521.9015
      201726.78.6101582.53.714
      201733.36.7102023.213.513
      20174-0.33.3101873.635.116
      20175-1.21.3101922.3029
      201761.12.5101403.24.424
      20177-0.71.7101522.81.324
      20178-0.57102103.40.122
      20179-210.1102174.2022
      201710-1.310.7102372.2027
      201711-1.210.8102532.8020
      201712-29.2102573016
      2017130.58.8102122.6023
      201714213.8101652028
      2017153.410.4101261.5023
      2017165.89101151.72.225
      2017174.912101152.109
      20171849101522.6017
      2017194.87101751.82.820
      2017205.27.7101480.73.825
      2017216.17.4101302.112.115
      2017223.712.5101222.8027
      2017233.98.5101394026
      2017242.24101464.37.427
      201725-1.82.2101774.81417
      201726-2.5-0.9102323.73.423
      201727-2.8-0.8101853.611.518
      201728-3.8-1.3102252.90.823
      201729-5.61.2102481.6032
      201730-5.42.8102152.2028
    • Table 5. Coefficient of determination R2 and standard error (SE) of estimated yield of rapeseed LAI in the four growing periods

      View table

      Table 5. Coefficient of determination R2 and standard error (SE) of estimated yield of rapeseed LAI in the four growing periods

      IndexSeedling stageBolting stageFlowering stagePod stageBolting stage+flowering stage
      R20.210.700.590.840.72
      SE /(kg·hm-2764475561352424
    • Table 6. Vegetation index used in study

      View table

      Table 6. Vegetation index used in study

      Vegetation indexFormula
      NDVIρNIRρred/ρNIR+ρred
      VARIgreenρgreenρred/ρgreen+ρred
      MSAVI[2RNIR+1-(2RNIR+1)2-8(RNIR-Rred)]/2
      EVI22.5×ρNIR-ρred/1+ρNIR+2.4×ρred
      SRρNIR/ρred
    • Table 7. Vegetation index and LAI

      View table

      Table 7. Vegetation index and LAI

      Inversion modelVegetation indexDecisive factor R2Period
      NDVIy = -2.1076x2+ 4.6991x + 1.48820.7498bolting stage
      VARIgreeny = 3.6302x + 2.92150.6917bolting stage
      MSAVIy = 2.8876x + 1.37870.746bolting stage
      EVIy = -1.0104x2+ 2.9926x + 1.44820.7602bolting stage
      SRy = -0.2229x2+ 1.7857x + 0.11910.8209bolting stage
      NDVIy = 5.3612x2- 4.5728x + 4.32070.1384flowering stage
      VARIgreeny = -61.405x2+ 19.333x + 2.73070.7708flowering stage
      MSAVIy = 14.342x2- 18.852x + 9.55920.154flowering stage
      EVIy = 0.7645x + 2.65080.1282flowering stage
      SRy = -0.0384x2+ 0.5389x + 2.03730.1508flowering stage
    • Table 8. Comparison of rapeseed yield estimated results and statistical yearbook

      View table

      Table 8. Comparison of rapeseed yield estimated results and statistical yearbook

      YearIllustrated data /km2Classification data /km2Illustrated output /tForecast output /tError rate total output /%
      201516.8217.363239334142.535.4
      201616.4415.673337231420.02-5.8
      20181515.483539736037.111.7
      201917.6618.163708636064.742.7
      202018.317.673962241210.174.0
    Tools

    Get Citation

    Copy Citation Text

    tao Guo, jingbo Wei, wenchao Tang. Oilseed Rape Yield Estimation Based on the WOFOST Model and Remote Sensing Data[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 19, 2021

    Accepted: Mar. 3, 2022

    Published Online: May. 23, 2023

    The Author Email: wenchao Tang (supersoupwin@163.com)

    DOI:10.3788/LOP213003

    Topics