Journal of Quantum Optics, Volume. 27, Issue 1, 70(2021)

Optical Soliton in PT-symmetric Nonlinear Waveguide with Fractional Diffraction

CHEN Xiao-Bo1, LI Peng-Fei2, and LI Lu1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(60)

    [1] [1] Longhi S. Quantum-Optical Analogies using photonic structures[J]. Laser & Photonics Reviews, 2010, 3(3):243-261. DOI: 10.1002/lpor. 200810055.

    [2] [2] Vladimir V. Konotop. Nonlinear waves in PT-symmetric systems[J]. Rev Mod Phys, 2016, 88(3):5002, DOI: 10.1103/RevModPhys. 88. 035002.

    [3] [3] Lu L, Joannopoulos J D, Soljacic M. Topological Photonics[J]. Nature Photonics, 2014, 8(11):821-829. DOI: 10.1038/nphoton.2014.248.

    [4] [4] Longhi S. Fractional Schrdingerequation in optics[J]. Optics Letters, 2015, 40(6):1117-20. DOI: 10.1364/OL.40.001117.

    [5] [5] Bender C M, Boettcher S, Meisinger P N. PT-Symmetric Quantum Mechanics[J]. Journal of Mathematical Physics, 1998, 40(5):2201-2229. DOI: 10.1063/1.532860.

    [6] [6] El-Ganainy R, Makris K G, Christodoulides D N, et al. Theory of coupled optical PT-symmetric structures[J]. Optics Letters, 2007, 32(17):2632-2634. DOI: 10.1364/OL.32.002632.

    [7] [7] Kottos,Tsampikos. Optical physics: Broken symmetry makes light work[J]. Nature Physics, 2010, 6(3):166-167. DOI: 10.1038/nphys1612.

    [8] [8] Musslimani Z H, Makris K G, El-Ganainy R, et al. Optical Solitons in PT Periodic Potentials[J]. Physical Review Letters, 2008, 100(3):0402. DOI: 10.1103/PhysRevLett.100.030402.

    [9] [9] Sakaguchi H, Tamura M. Scattering and Trapping of Nonlinear Schrdinger Solitons in External Potentials[J]. Journal of the Physical Society of Japan, 2004, 73(3):503-506. DOI: 10.1143/JPSJ.73.503.

    [10] [10] Mostafazadeh, Ali. A Dynamical Formulation of One-Dimensional scattering theory and its applications in optics[J]. Annals of Physics, 2014, 341:77-85. DOI: 10.1016/j.aop.2013.11.008.

    [11] [11] Umarov B A, Messikh A, Regaa N, et al. Variational analysis of soliton scattering by external potentials[J]. Journal of Physics Conference, 2013, 435:012024. DOI: 10.1088/1742-6596/435/1/012024.

    [12] [12] Ernst T, Brand J. Resonant trapping in the transport of a matter-wave soliton through a quantum well[J]. Physical Review A, 2010, 81(3):033614. DOI: 10.1103/PhysRevA.81.033614.

    [13] [13] Al Khawaja U, Almarzoug S M, Bahlouli H, et al. Unidirectional soliton flows in PT-symmetric potentials[J]. Phys Rev A, 2013, 88(2):96-102. DOI: 10.1103/PhysRevA.88.023830.

    [14] [14] Khare A, Al-Marzoug S M, Bahlouli H. Solitons in PT-symmetric potential with competing nonlinearity[J]. Physics Letters A, 2012, 376(45):2880-2886. DOI: 10.1016/j.physleta.2012.09.047.

    [15] [15] Asad-Uz-Zaman M, Khawaja U A. Directional flow of solitons with asymmetric potential wells: Soliton diode[J]. Europhysics Letters, 2013, 101(5):741-741. DOI: 10.1209/0295-5075/101/50008.

    [16] [16] Dmitriev S V, Suchkov S V, Sukhorukov A A, et al. Scattering of linear and nonlinear waves in a waveguide array with a PT-symmetric defect[J]. Physical Review A, 2011,84(1):911-916. DOI: 10.1103/PhysRevA.84. 013833.

    [17] [17] Polo J, Verònica A. Soliton-based matter wave interferometer[J]. Phys Rev A, 2013, 88(5):3628. DOI: 10.1103/PhysRevA.88.053628.

    [18] [18] Nazari F, Nazari M, Moravvej-Farshi M K. A 2×2 spatial optical switch based on PT-symmetry[J]. Optics Letters, 2011, 36(22):4368-4370. DOI: 10.1364/OL.36.004368.

    [19] [19] Miri M A, Likamwa P, Christodoulides D N. Large area single-mode parity–time-symmetric laser amplifiers[J]. Optics Letters, 2012, 37(5):764-766. DOI: 10.1364/ol.37.000764

    [20] [20] Laskin, N. Fractional quantum mechanics[J]. Physical Review E, 2000, 62(3):3135-3145. DOI: 10.1103/physreve.62.3135

    [21] [21] Laskin N. Fractional Quantum Mechanics and Lévy Path Integrals[J]. Physics Letters A, 2000, 268(4-6):298-305. DOI: 10.1016/S0375-9601(00)00201-2.

    [22] [22] Laskin N. Fractional Schrdinger equation[J]. Physical Review E, 2002, 66:056108. DOI: 10.1103/PhyRevE.66. 056108.

    [23] [23] Stickler B A. Potential condensed-matter realization of space-fractional quantum mechanics: The one-dimensional Lévy crystal[J]. Physical Review E Statal Nonlinear & Soft Matter Physics, 2013, 88(1):012120. DOI: 10.1103/PhysRevE.88. 012120.

    [24] [24] Longhi S. Fractional Schrdinger equation in optics[J]. Optics Letters, 2015, 40(6):1117-20. DOI: 10.1364/ol.40. 001117.

    [25] [25] Laskin N. Fractional quantum mechanics[J]. Physical Review E, 2000, 62(3):3135-3145. DOI: 10.1103/physreve.62.3135.

    [26] [26] Zhang Y, Liu X, Beli M R, et al. Propagation dynamics of a light beam in a fractional Schrdinger equation. Phys Rev Lett, 2015, 115(18):180403. DOI: 10.1103/PhysRevLett.115.180403.

    [27] [27] Zhang Y Q, Zhong H, Beli M R, Milivoj R, et al. Diffraction-free beams in fractional Schrdinger equation[J]. Scientific Report, 2015, 6(11):23645. DOI: 10.1038/srep23645.

    [28] [28] Huang X W, Deng Z X, Fu X Q. Dynamics of finite energy Airy beams modeled by the fractional Schrdinger equation with a linear potential[J]. Journal of the Optical Society of America B, 2017, 34:976–982. DOI: 10.1364/JOSAB.34.000976.

    [29] [29] Huang X W, Deng Z X, Shi X H, et al. Propagation characteristics of ring Airy beams modeled by fractional Schrdinger equation[J]. Journal of the Optical Society of America B, 2017, 34(10):2190-2197. DOI: 10.1364/JOSAB.34.002190.

    [30] [30] Huang X, Shi X, Deng Z, et al. Potential barrier-induced dynamics of finite energy Airy beams in fractional Schrdinger equation[J]. Optics Express, 2017, 25(26):32560. DOI: 10.1364/OE.25.032560.

    [31] [31] Zhang D, Zhang Y Q, Zhang Z Y, et al. Unveiling the Link Between Fractional Schrdinger Equation and Light Propagation in Honeycomb Lattice[J]. Annalen Der Physik, 2017, 529(7):1700149. DOI: 10.1002/andp.201700149.

    [32] [32] Zhang L, Li C, Zhong H, et al. Propagation dynamics of super-Gaussian beams in fractional Schrdinger equation: from linear to nonlinear regimes[J]. Optics Express, 2016, 24(13):14406-14418. DOI: 10.1364/OE.24.014406.

    [33] [33] Zang F, Wang Y, Li L. Dynamics of Gaussian beam modeled by fractional Schrdinger equation with a variable coefficient[J]. Optics Express, 2018, 26:23740–23750. DOI: 10.1364/OE.26.023740.

    [34] [34] Huang C, Dong L. Beam propagation management in a fractional Schrodinger equation[J]. Rep, 2017, 7(1):5442. DOI: 10.1038/s41598-017-05926-5.

    [35] [35] Zhang Y, Wang R, Zhong H, et al. Optical Bloch oscillation and Zener tunneling in the fractional Schrdinger equation[J]. Scientific Report, 2017, 7(1):17872. DOI: 10.1038/s41598-017-17995-7.

    [36] [36] Wang R, Zhang J W, Zhang Y P, et al. Resonant mode conversions and Rabi oscillations in a fractional Schrdinger equation[J]. Optics Express, 2017, 25(26):32401. DOI: 10.1364/OE.25.032401.

    [37] [37] Huang C M, Shang C, Li J, et al. Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice[J]. Optics Express, 2019, 27(5):6259. DOI: 10.1364/OE.27.006259.

    [38] [38] Li P F, Li J D, Han B C, et al. PT-symmetric optical modes and spontaneous symmetry breaking in the space-fractional Schrdinger equation[J]. Rom Rep Phys, 2019, 71:106.

    [39] [39] Chen M N, Zeng S H, Lu D Q, et al. Optical solitons, self-focusing, and wave collapse in a space-fractional Schrdinger equation with a kerr-type nonlinearity[J]. Phys Rev E, 2018, 98:022211. DOI: 10.1103/PhysRevE.98.022211.

    [40] [40] Zhong W P, Beli M, Zhang Y Q. Accessible solitons of fractional dimension[J]. Annals of Physics, 2016, 368:110-116. DOI: 10.1016/j.aop.2016.02.007.

    [41] [41] Zhong W P, Milivoj R. Beli, Malomed B A, et al. Spatiotemporal accessible solitons in fractional dimensions[J]. Physical Review E, 2016, 94(1):012216. DOI: 10.1103/physreve.94.012216.

    [42] [42] Wei P Z, Beli M R, Zhang Y Q. Fraction‐Dimensional Accessible Solitons in a Parity‐Time Symmetric Potential[J]. Annalen der Physik, 2018, 530(2):201700311. DOI: 10.1002/andp.201700311.

    [43] [43] Dong L, Huang C M. Double-hump solitons in fractional dimensions with a PT-symmetric potential[J]. Optics Express, 2018, 26(8):10509. DOI: 10.1364/OE.26.010509.

    [44] [44] Huang C M, Deng H Y, Zhang W F, et al. Fundamental solitons in the nonlinear fractional Schrdinger equation with a PT-symmetric potential[J]. Europhysics Letters, 2018, 122(2):24002. DOI: 10.1209/0295-5075/ 122/24002.

    [45] [45] Huang C M, Dong L W. Gap solitons in the nonlinear fractional Schrdinger equation with an optical lattice[J]. Optics Letters, 2016, 41(24):5636. DOI: 10.1364/OL.41.005636.

    [46] [46] Xiao J, Tian Z X, Huang C M, et al. Surface gap solitons in a nonlinear fractional Schrdinger equation[J]. Optics Express, 2018, 26(3):2650-2658. DOI: 10.1364/oe.26.002650.

    [47] [47] Yao X K, Liu X M. Solitons in the fractional Schrdinger equation with parity-time-symmetric lattice potential[J]. Photonics Research, 2018, 6(9):50-54. DOI: 10.1364/PRJ.6.000875.

    [48] [48] Li P, Li R, Dai A C. Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction[J]. Optics Express, 2021, 29(3):3193-3210. DOI: 10.1364/OE. 415028.

    [49] [49] Li P, Malomed B A, Mihalache D. Vortex solitons in fractional nonlinear Schrdinger equation with the cubic-quintic nonlinearity[J]. Chaos, Solitons & Fractals, 2020, 137:109783. DOI: 10.1016/j.chaos.2020. 109783.

    [50] [50] Yao X K, Liu X M. Off-site and on-site vortex solitons in space-fractional photonic lattices[J]. Optics Letters, 2018, 43(23):5749. DOI: 10.1364/OL.43.005749.

    [51] [51] Dong L W, Huang C M. Composition Relation between Nonlinear Bloch Waves and Gap Solitons in Periodic Fractional Systems[J]. Materials, 2018, 11(7):1134. DOI: 10.3390/ma11071134.

    [52] [52] Zeng L W, Zeng J H. One-dimensional solitons in fractional Schrdinger equation with a spatially modulated nonlinearity: nonlinear lattice[J]. Optics Letters, 2019, 44: 2661–4. DOI: 10.1364/OL.44.002661.

    [53] [53] Huang C M, Dong L W. Dissipative surface solitons in a nonlinear fractional Schrdinger equation[J]. Optics Letters, 2019, 44(22):5438. DOI: 10.1364/OL44.005438.

    [54] [54] Qiu Y, Malomed B A, Mihalache D, et al. Soliton dynamics in a fractional complex Ginzburg-Landau model[J]. Chaos, Solitons Fract, 2020, 131:109471. DOI: 10.1016/j.chaos.2019.109471.

    [55] [55] Zeng L W, Mihalache D, Malomed B A, et al. Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension[J]. Chaos, Solitons & Fractals, 2021,144:110589. DOI: 10.1016/j.chaos.2020. 110589.

    [56] [56] Zhu X, Yang F, Cao S, et al. Multipole gap solitons in fractional Schrdinger equation with parity-time-symmetric optical lattices[J]. Optics Express, 2020, 28(2):1631-1639. DOI: 10.1364/OE.382876.

    [57] [57] Li P, Dai C. Double Loops and Pitchfork Symmetry Breaking Bifurcations of Optical Solitons in Nonlinear Fractional Schrdinger Equation with Competing Cubic-Quintic Nonlinearities[J]. Annalen der Physik, 2020, 532(8):1-6. DOI: 10.1002/andp.202000048.

    [58] [58] Zhu X, Cao S, Xie J, et al. Vector surface solitons in optical lattices with fractional-order diffraction[J]. Journal of the Optical Society of America B, 2020, 37(10):3041-3047. DOI: 10.1364/JOSAB.398407.

    [59] [59] Li P, Malomed B A, Mihalache D. Metastable soliton necklaces supported by fractional diffraction and competing nonlinearities[J]. Optics Express, 2020, 28(23):34472-34488. DOI: 10.1364/OE.409908.

    [60] [60] Molina M I. The Two-Dimensional Fractional Discrete Nonlinear Schrodinger Equation[J]. Physics Letters A, 2020, 384(33):126835. DOI: 10.1016/j.physleta.2020.126835.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Xiao-Bo, LI Peng-Fei, LI Lu. Optical Soliton in PT-symmetric Nonlinear Waveguide with Fractional Diffraction[J]. Journal of Quantum Optics, 2021, 27(1): 70

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 26, 2020

    Accepted: --

    Published Online: Sep. 13, 2021

    The Author Email: LI Lu (llz@sxu.edu.cn)

    DOI:10.3788/jqo20212701.0601

    Topics