Matter and Radiation at Extremes, Volume. 7, Issue 1, 015901(2022)

Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields

Sandrine Ferria), Olivier Peyrusse, and Annette Calisti
Author Affiliations
  • Aix-Marseille Université, CNRS, PIIM, UMR7345, Marseille, France
  • show less
    References(74)

    [1] H. R.Griem. Principles of Plasma Spectroscopy(1997).

    [2] H.-W.Drawin, L.Herman, H.Nguyen-Hoe. Effet d’un champ magnetique uniforme sur les profils des raies de l’hydrogene. J. Quant. Spectrosc. Radiat. Transfer, 7, 429-474(1967).

    [3] S. M.Carr, M. E.Cox, M. S.Murillo. Magnetized plasma microfield studies by molecular dynamics simulation. J. Quant. Spectrosc. Radiat. Transfer, 58, 811-820(1997).

    [4] M. A.Gigosos, M. á.González. Comment on ‘A study of ion-dynamics and correlation effects for spectral line broadening in plasma: K-shell lines. J. Quant. Spectrosc. Radiat. Transfer, 105, 533-535(2007).

    [5] Y.Maron, E.Stambulchik, K.Tsigutkin. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Phys. Rev. Lett., 98, 225001(2007).

    [6] P.B?rner, H.Capes, S.Ferri, L.Godbert-Mouret, V.Kotov, M.Koubiti, Y.Marandet, D.Reiter, J.Rosato, R.Stamm et al. Line shape modeling for radiation transport investigations in magnetic fusion plasmas. High Energy Density Phys., 5, 93-96(2009).

    [7] G.Mathys. The transfer of polarized light in Stark broadened hydrogen lines in the presence of a magnetic field. J. Quant. Spectrosc. Radiat. Transfer, 44, 143-151(1990).

    [8] A.Derevianko, E.Oks. Generalized theory of ion impact broadening in magnetized plasmas and its applications for tokamaks. Phys. Rev. Lett., 73, 2059(1994).

    [9] S.Brillant, G.Mathys, C.Stehle. Hydrogen line formation in dense magnetized plasmas. Astron. Astrophys., 339, 286-297(1998).

    [10] S.Günter, A.K?nies. Diagnostics of dense plasmas from the profile of hydrogen spectral lines in the presence of a magnetic field. J. Quant. Spectrosc. Radiat. Transfer, 62, 425-431(1999).

    [11] H.Capes, Y.Corre, C.De Michelis, B.Felts, L.Godbert-Mouret, R.Guirlet, M.Koubiti, R.Stamm, K.Touati. Spectroscopy of magnetized plasmas. J. Quant. Spectrosc. Radiat. Transfer, 71, 365-372(2001).

    [12] M. L.Adams, H. K.Chung, L.Klein, R. W.Lee, H. A.Scott. Complex atomic spectral line shapes in the presence of an external magnetic field. Phys. Rev. E, 66, 066413(2002).

    [13] S.-s.Han, X.-d.Li, C.Wang, Z.-z.Xu. Ultrahigh magnetic field diagnostic with spectral profile calculation. J. Quant. Spectrosc. Radiat. Transfer, 76, 31-43(2003).

    [14] A.Calisti, S.Ferri, M. A.Gigosos, M. A.González, V.Lisitsa, C.Mossé, L.Mouret, B.Talin. Frequency-fluctuation model applied to Stark–Zeeman spectral line shapes in plasmas. Phys. Rev. E, 84, 026407(2011).

    [15] C. A.Iglesias. Efficient algorithms for Stark–Zeeman spectral line shape calculations. High Energy Density Phys., 9, 737-744(2013).

    [16] F.Gilleron, J.-C.Pain. ZEST: A fast code for simulating Zeeman-Stark line-shape functions. Atoms, 6, 11(2018).

    [17] A. V.Arefiev, M.Bailly-Grandvaux, D.Batani, F. N.Beg, A.Calisti, M.Ehret, S.Ferri, R.Florido, P.Forestier-Colleoni, J. J.Santos et al. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Phys. Plasmas, 25, 056705(2018).

    [18] H.-K.Chung, S.Ferri, K. F. F.Law, S.Lee, C.Liu, K.Matsuo, J.Moody, H.Morita, B.Pollock, S.Sakata et al. Design of Zeeman spectroscopy experiment with magnetized silicon plasma generated in the laboratory. High Energy Density Phys., 33, 100710(2019).

    [19] R. D.Cowan. The Theory of Atomic Structure and Spectra(1981).

    [20] I. P.Grant, D. F.Mayers, B. J.McKenzie, P. H.Norrington, N. C.Pyper. An atomic multiconfigurational Dirac-Fock package. Comput. Phys. Commun., 21, 207-231(1980).

    [21] M. F.Gu. The flexible atomic code. Can. J. Phys., 86, 675-689(2008).

    [23] B.Cagnac, J. C. P.Peyroula. Physique Atomique, Tome 2: Applications de la Mecanique Quantique(1982).

    [24] J. C.Slater. Quantum Theory of Atomic Structure(1960).

    [25] O. V.Ivanov, M. S.Litsarev. Multiconfiguration Hartree-Fock method: Direct diagonalization for the construction of a multielectron basis. J. Exp. Theor. Phys., 111, 22-26(2010).

    [26] E. G.Hill. Calculation of unit tensor operators using a restricted set of slater determinants. J. Quant. Spectrosc. Radiat. Transfer, 140, 1-6(2014).

    [27] E.Condon, E. U.Condon, G.Shortley. The Theory of Atomic Spectra(1935).

    [28] W. F.Shadwick, J. D.Talman. Optimized effective atomic central potential. Phys. Rev. A, 14, 36(1976).

    [29] G. J.Iafrate, J. B.Krieger, Y.Li. Systematic approximations to the optimized effective potential: Application to orbital-density-functional theory. Phys. Rev. A, 46, 5453(1992).

    [30] R. H.Garstang, S. B.Kemic. Hydrogen and helium spectra in large magnetic fields. Astrophys. Space Sci., 31, 103-115(1974).

    [31] B. G.Castanheira, J. E. S.Costa, S.Jordan, S. O.Kepler, S. J.Kleinman, D.Koester, B.Külebi, A.Nitta, V.Pe?anha, I.Pelisoli et al. Magnetic white dwarf stars in the sloan digital sky survey. Mon. Not. R. Astron. Soc., 429, 2934-2944(2013).

    [32] J.Rosato. Hydrogen line shapes in plasmas with large magnetic fields. Atoms, 8, 74(2020).

    [33] Y.Marandet, A.Raji, J.Rosato, R.Stamm. New analysis of Balmer line shapes in magnetic white dwarf atmospheres. Eur. Phys. J. D, 75, 1-4(2021).

    [34] D. R.Inglis, E.Teller. Ionic depression of series limits in one-electron spectra. Astrophys. J., 90, 439(1939).

    [35] M.Bonitz, T.Ott. Diffusion in a strongly coupled magnetized plasma. Phys. Rev. Lett., 107, 135003(2011).

    [36] S. D.Baalrud, J.Daligault. Transport regimes spanning magnetization-coupling phase space. Phys. Rev. E, 96, 043202(2017).

    [37] S. D.Baalrud, D. J.Bernstein, J.Daligault, T.Lafleur. Friction force in strongly magnetized plasmas. Phys. Rev. E, 102, 041201(2020).

    [38] E.Oks. Influence of magnetic-field-caused modifications of trajectories of plasma electrons on spectral line shapes: Applications to magnetic fusion and white dwarfs. J. Quant. Spectrosc. Radiat. Transfer, 171, 15-27(2016).

    [39] S.Ferri, J.Rosato, R.Stamm. Influence of helical trajectories of perturbers on Stark line shapes in magnetized plasmas. Atoms, 6, 12(2018).

    [40] S.Alexiou. Line shapes in a magnetic field: Trajectory modifications I: Electrons. Atoms, 7, 52(2019).

    [41] S.Alexiou. Line shapes in a magnetic field: Trajectory modifictions II: Full collision-time statistics. Atoms, 7, 94(2019).

    [42] C.Deutsch. Electric microfield distributions in plasmas in presence of a magnetic field. Phys. Lett. A, 30, 381-382(1969).

    [44] A.Calisti, F.Khelfaoui, R. W.Lee, R.Stamm, B.Talin. Model for the line shapes of complex ions in hot and dense plasmas. Phys. Rev. A, 42, 5433(1990).

    [45] A.Calisti, L.Godbert, R.Stamm, B.Talin. Fast numerical methods for line shape studies in hot and dense plasmas. J. Quant. Spectrosc. Radiat. Transfer, 51, 59-64(1994).

    [46] A.Asfaw, C. A.Back, A.Calisti, B.Hammel, C.Keane, C.Mossé, R.Stamm, B.Talin, J. S.Wark, N. C.Woolsey et al. Spectroscopy of compressed high energy density matter. Phys. Rev. E, 53, 6396(1996).

    [47] A.Asfaw, C. A.Back, A.Calisti, B. A.Hammel, C. J.Keane, J. C.Moreno, C.Mossé, J. K.Nash, R.Stamm, N. C.Woolsey et al. Evolution of electron temperature and electron density in indirectly driven spherical implosions. Phys. Rev. E, 56, 2314(1997).

    [48] A.Calisti, L.Godbert, L.Klein, R. W.Lee, R.Stamm, B.Talin. Frequency-fluctuation model for line-shape calculations in plasma spectroscopy. Phys. Rev. A, 51, 1918(1995).

    [49] M.Abramowitz, I.Stegun. Handbook of Mathematical Functions(1972).

    [50] A.Calisti, T.del Rio Gaztelurrutia, E.Dufour, J. W.Dufty, M. A.Gigosos, M. A.González, B.Talin. Molecular dynamics simulation for modelling plasma spectroscopy. J. Phys. A: Math. Gen., 36, 6049(2003).

    [51] H. E.DeWitt, W. B.Hubbard, C. A.Iglesias, J. L.Lebowitz, D.MacGowan. Low-frequency electric microfield distributions in plasmas. Phys. Rev. A, 31, 1698(1985).

    [52] A.Bar-Shalom, A.Calisti, C. A.Iglesias, D. P.Kilcrease, R. W.Lee, M. S.Murillo, F. J.Rogers, R.Shepherd. Fast electric microfield distribution calculations in extreme matter conditions. J. Quant. Spectrosc. Radiat. Transfer, 65, 303-315(2000).

    [53] C. F. Hooper. Low-frequency component electric microfield distributions in plasmas. Phys. Rev., 165, 215(1968).

    [54] C. A.Back, A.Calisti, L.Godbert, B. A.Hammel, C. J.Keane, J. C.Moreno, C.Mossé, J. K.Nash, R.Stamm, N. C.Woolsey et al. Spectroscopic line shape measurements at high densities. J. Quant. Spectrosc. Radiat. Transfer, 58, 975-989(1997).

    [55] S.Alexiou, A.Calisti, S.Ferri, M. A.Gigosos, M.González, D.González-Herrero, N.Lara, C.Mossé, J.Rosato, B.Talin et al. Ion dynamics effect on Stark-broadened line shapes: A cross-comparison of various models. Atoms, 2, 299-318(2014).

    [56] L. A.Bureyeva, A.Calisti, S.Ferri, V. S.Lisitsa, C.Mossé, F.Rosmej, B.Talin. Dynamic Stark broadening as the Dicke narrowing effect. Phys. Rev. E, 81, 016406(2010).

    [57] M.Blaha, H. R.Griem, P. C.Kepple. Stark-profile calculations for Lyman-series lines of one-electron ions in dense plasmas. Phys. Rev. A, 19, 2421(1979).

    [58] A.Calisti, S.Ferri, E.Galtier, V.Lisitsa, C.Mossé, F.Rosmej, B.Talin. Interference effects and Stark broadening in XUV intrashell transitions in aluminum under conditions of intense XUV free-electron-laser irradiation. Phys. Rev. A, 87, 033424(2013).

    [59] A.Calisti, S.Ferri, L.Klein, R. W.Lee, R.Stamm, B.Talin. Electronic broadening model for high-n balmer line profiles. Phys. Rev. E, 58, R6943(R)(1998).

    [60] E.Maschke, D.Voslamber. Stark broadening of hydrogen lines in strong magnetic fields. Proceedings of the 7th International Conference on Phenomena in Ionized Gases, 568(1966).

    [61] H.Daido, H.Fujita, M.Fujita, Y.Kitagawa, F.Miki, K.Mima, S.Nakai, K.Sawai, C.Yamanaka. Generation of a strong magnetic field by an intense CO2 laser pulse. Phys. Rev. Lett., 56, 846(1986).

    [62] S.Fujioka, Y.Hironaka, K.Ishihara, T.Johzaki, K.Shigemori, Z.Zhang et al. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep., 3, 1-7(2013).

    [63] M.Bailly-Grandvaux, D.Batani, R.Bouillaud, S.Dorard, P.Forestier-Colleoni, S.Fujioka, L.Giuffrida, P.Korneev, J. J.Santos, Z.Zhang et al. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields. New J. Phys., 17, 083051(2015).

    [64] S.Buscher, A.Calisti, S.Glenzer, L.Godbert, H.-J.Kunze, R. W.Lee, J.Nash, R.Stamm, B.Talin, T.Wrubel et al. Spectral line profiles of n = 4 to n = 5 transitions in C IV, N V and O VI. J. Phys. B: At., Mol. Opt. Phys., 27, 5507(1994).

    [65] T.Fujimoto, A.Iwamae. Plasma Polarization Spectroscopy(2008).

    [66] M.Bailly-Grandvaux, F.Beg, A.Calisti, J.Davies, S.Ferri, R.Florido, M.Gigosos, J.Honrubia, R.Mancini, S.McGuffey et al. An all-optical platform to characterize strongly magnetized hot dense plasmas at >10 kT, BO07–005(2020).

    [67] M.Bailly-Grandvaux, F.Beg, A.Calisti, S.Ferri, R.Florido, M.Gigosos, R.Mancini, C.McGuffey, T.Nagayama, C.Walsh et al. Spectroscopic and MHD modeling of magnetized cylindrical implosions using a laser-produced seed B-field, GP17.00009(2020).

    [68] D. H.Barnak, R.Betti, E. M.Campbell, J. R.Davies, V. Y.Glebov, E. C.Hansen, J. P.Knauer, J. L.Peebles, A. B.Sefkow. Inferring fuel areal density from secondary neutron yields in laser-driven magnetized liner inertial fusion. Phys. Plasmas, 26, 022706(2019).

    [69] B. D.Appelbe, J. P.Chittenden, A.Crilly, K.McGlinchey, J. K.Tong, C. A.Walsh, M. F.Zhang. Perturbation modifications by pre-magnetisation of inertial confinement fusion implosions. Phys. Plasmas, 26, 022701(2019).

    [70] J. P.Chittenden, D. W.Hill, C.Ridgers, C. A.Walsh. Extended-magnetohydrodynamics in under-dense plasmas. Phys. Plasmas, 27, 022103(2020).

    [71] C. A.Back, A.Calisti, B. A.Hammel, C. J.Keane, J. C.Moreno, C.Mossé, J. K.Nash, R.Stamm, B.Talin, N. C.Woolsey et al. Competing effects of collisional ionization and radiative cooling in inertially confined plasmas. Phys. Rev. E, 57, 4650(1998).

    [72] H.-K.Chung, R. W.Lee. Applications of NLTE population kinetics. High Energy Density Phys., 5, 1-14(2009).

    [73] R.Florido, J. M.Gil, R. C.Mancini, P.Martel, E.Mínguez, R.Rodríguez, J. G.Rubiano. Modeling of population kinetics of plasmas that are not in local thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates. Phys. Rev. E, 80, 056402(2009).

    [74] J. F.Seely. Gigagauss magnetic field measurements using Zeeman broadening of Ne-like transitions in highly charged ions. Rev. Sci. Instrum., 92, 053535(2021).

    Tools

    Get Citation

    Copy Citation Text

    Sandrine Ferri, Olivier Peyrusse, Annette Calisti. Stark–Zeeman line-shape model for multi-electron radiators in hot dense plasmas subjected to large magnetic fields[J]. Matter and Radiation at Extremes, 2022, 7(1): 015901

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Inertial Confinement Fusion Physics

    Received: May. 31, 2021

    Accepted: Nov. 3, 2021

    Published Online: Apr. 6, 2022

    The Author Email: Sandrine Ferri (sandrine.ferri@univ-amu.fr)

    DOI:10.1063/5.0058552

    Topics