International Journal of Extreme Manufacturing, Volume. 7, Issue 2, 25505(2025)

Biomimetic inner helicoidal microfluidics with enhanced capillary rise for step liquid lifting mimicking transpiration

Wang Zhaolong, Li Yinfeng, Zhan Ziheng, Xie Mingzhu, Li Yingying, Zhang Chengqi, Dong Zhichao, and Shuai Yong
References(52)

[1] [1] Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W and Jiang L 2016 Continuous directional water transport on the peristome surface of Nepenthes alataNature53285–89

[2] [2] Feng S L, Zhu P G, Zheng H X, Zhan H Y, Chen C, Li J Q, Wang L Q, Yao X, Liu Y H and Wang Z K 2021 Three-dimensional capillary ratchet-induced liquid directional steeringScience3731344–8

[3] [3] Li C X, Yu C L, Zhou S, Dong Z C and Jiang L 2020 Liquid harvesting and transport on multiscaled curvaturesProc. Natl Acad. Sci. USA11723436–42

[4] [4] Yanega G M and Rubega M A 2004 Hummingbird jaw bends to aid insect captureNature428615

[5] [5] Li Y R, Xie M J, Lv S, Sun Y, Li Z, Gu Z M and He Y 2023 A bionic controllable strain membrane for cell stretching at air-liquid interface inspired by papercuttingInt. J. Extrem. Manuf.5045502

[6] [6] Gouveia B, Kim Y, Shaevitz J W, Petry S, Stone H A and Brangwynne C P 2022 Capillary forces generated by biomolecular condensatesNature609255–64

[7] [7] Parker A R and Lawrence C R 2001 Water capture by a desert beetleNature41433–34

[8] [8] Zhan Z H, Su Y, Xie M Z, Li Y F, Shuai Y and Wang Z L 2024 Recent advances and challenges for bionic solar water evaporationMater. Today80529–48

[9] [9] Liu Y Z, Xiao J W, Koo J and Yan B H 2021 Chirality-driven topological electronic structure of DNA-like materialsNat. Mater.20638–44

[10] [10] Kim M, Yoo S, Jeong H E and Kwak M K 2022 Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clusteringNat. Commun.135181

[11] [11] Chen L, Duan G H, Zhang C, Cheng P and Wang Z L 2022 3D printed hydrogel for soft thermo-responsive smart windowInt. J. Extrem. Manuf.4025302

[12] [12] Konda A, Rau A, Stoller M A, Taylor J M, Salam A, Pribil G A, Argyropoulos C and Morin S A 2018 Soft microreactors for the deposition of conductive metallic traces on planar, embossed, and curved surfacesAdv. Funct. Mater.281803020

[13] [13] Yang C Y, Li W Z, Zhao Y J and Shang L R 2024 Flexible liquid-diode microtubes from multimodal microfluidicsProc. Natl Acad. Sci. USA121e2402331121

[14] [14] Wen R F, Li Q, Wang W, Latour B, Li C H, Li C, Lee Y C and Yang R G 2017 Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arraysNano Energy3859–65

[15] [15] van Erp R, Soleimanzadeh R, Nela L, Kampitsis G and Matioli E 2020 Co-designing electronics with microfluidics for more sustainable coolingNature585211–6

[16] [16] Zhang Set al2022 Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvestingNat. Commun.134168

[17] [17] Wang M, Wei Y, Li R X, Wang X, Wang C Y, Ren N Q and Ho S H 2023 Sustainable seawater desalination and energy management: mechanisms, strategies, and the way forwardResearch60290

[18] [18] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J and Jiang L 2010 Directional water collection on wetted spider silkNature463640–3

[19] [19] Xie M Z, Zhan Z H, Li Y F, Zhao J K, Zhang C, Wang Z L and Wang Z K 2024 Functional microfluidics: theory, microfabrication, and applicationsInt. J. Extrem. Manuf.6032005

[20] [20] Karnaushenko D, Kang T, Bandari V K, Zhu F and Schmidt O G 2020 3D self-assembled microelectronic devices: concepts, materials, applicationsAdv. Mater.321902994

[21] [21] Lian Z X, Zhou J H, Ren W F, Chen F Z, Xu J K, Tian Y L and Yu H D 2023 Recent progress in bio-inspired macrostructure array materials with special wettability-from surface engineering to functional applicationsInt. J. Extrem. Manuf.6012008

[22] [22] Kotadia H R, Gibbons G, Das A and Howes P D 2021 A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and propertiesAddit. Manuf.46102155

[23] [23] Zheng L, Zywietz U, Birr T, Duderstadt M, Overmeyer L, Roth B and Reinhardt C 2021 UV-LED projection photolithography for high-resolution functional photonic componentsMicrosyst. Nanoeng.764

[24] [24] Yasuga Het al2021 Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffoldsNat. Phys.17794–800

[25] [25] Liu S J, Zhan Z D, Si Y F, Yu C L, Jiang L and Dong Z C 2023 Liquid shuttle mediated by microwick for open-air microfluidicsAdv. Funct. Mater.221248533

[26] [26] Wang Z L, Yin Q, Zhan Z H, Li W H, Xie M Z, Duan H G, Cheng P, Zhang C, Chen Y P and Dong Z C 2023 Bionic microchannels for step lifting transpirationInt. J. Extrem. Manuf.5025502

[27] [27] Skylar-Scott M A, Mueller J, Visser C W and Lewis J A 2019 Voxelated soft matter via multimaterial multinozzle 3D printingNature575330–5

[28] [28] Gulfam R and Chen Y P 2022 Recent growth of wettability gradient surfaces: a reviewResearch20229873075

[29] [29] Wang Z L, Li Y Y, Gong S, Li W H, Duan H G, Cheng P, Chen Y P and Dong Z C 2022 Three-dimensional open water microchannel transpiration mimeticsACS Appl. Mater. Interfaces1430435–42

[30] [30] Shi Y, Ilic O, Atwater H A and Greer J R 2021 All-day fresh water harvesting by microstructured hydrogel membranesNat. Commun.122797

[31] [31] Cheng Z Y, Li C X, Gao C, Zhang C Q, Jiang L and Dong Z C 2023 Viscous-capillary entrainment on bioinspired millimetric structure for sustained liquid transferSci. Adv.9eadi5990

[32] [32] Zhang F J, Wang Z Y, Liu Z, Gao X, Song Y Y, Cheng G G, Zhang Z Q and Ding J N 2023 Cross-hatch textured cone enables dual-mode water transport and collectionChem. Eng. J.478147336

[33] [33] Yafia M, Ymbern O, Olanrewaju A O, Parandakh A, Sohrabi Kashani A, Renault J, Jin Z J, Kim G, Ng A and Juncker D 2022 Microfluidic chain reaction of structurally programmed capillary flow eventsNature605464–9

[34] [34] Zeng C, Faaborg M W, Sherif A, Falk M J, Hajian R, Xiao M, Hartig K, Bar-Sinai Y, Brenner M P and Manoharan V N 2022 3D-printed machines that manipulate microscopic objects using capillary forcesNature61168–73

[35] [35] Cao M Y, Qiu Y C, Bai H Y, Wang X S, Li Z, Zhao T H, Tian Y R, Wu Y C and Jiang L 2024 Universal liquid self-transport beneath a flexible superhydrophilic trackMatter73053–68

[36] [36] Yang C Y, Yu Y R, Shang L R and Zhao Y J 2024 Flexible hemline-shaped microfibers for liquid transportNat. Chem. Eng.187–96

[37] [37] Yang L, Li W, Lian J Y, Zhu H J, Deng Q Y, Zhang Y Y, Li J Q, Yin X B and Wang L Q 2024 Selective directional liquid transport on shoot surfaces ofCrassula muscosa Science3841344–9

[38] [38] Zhang X D, Ben S, Zhao Z H, Ning Y Z, Li Q, Long Z Y, Yu C M, Liu K S and Jiang L 2023 Lossless and directional transport of droplets on multi-bioinspired superwetting V-shape railsAdv. Funct. Mater.332212217

[39] [39] Li Y Xet al2022 Directional and adaptive oil self-transport on a multi-bioinspired grooved conical spineAdv. Funct. Mater.322201035

[40] [40] Liu Z X, Zhan Z, Shen T, Li N, Zhang C, Yu C, Li C, Si Y, Jiang L and Dong Z 2023 Dual-bionic superwetting gears with liquid directional steering for oil-water separationNat. Commun.144128

[41] [41] Ma L L, Liu C, Wu S B, Chen P, Chen Q M, Qian J X, Ge S J, Wu Y H, Hu W and Lu Y Q 2021 Programmable self-propelling actuators enabled by a dynamic helical mediumSci. Adv.7eabh3505

[42] [42] Kanik Met al2019 Strain-programmable fiber-based artificial muscleScience365145–50

[43] [43] De Rybel B, Mhnen A P, Helariutta Y and Weijers D 2016 Plant vascular development: from early specification to differentiationNat. Rev. Mol. Cell Biol.1730–40

[44] [44] Liu Y J, Zhang J L and Wu P Y 2024 Near-frictionless long-distance water transport in trees enabled by hierarchically helical molecular pumpsCCS Chem.1–9

[45] [45] Zhan Z H, Chen L, Duan H G, Chen Y Q, He M and Wang Z L 2022 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobotsInt. J. Extrem. Manuf.4015302

[46] [46] Sun J, Qin X Z, Song Y X, Xu Z Y, Zhang C, Wang W, Wang Z K, Wang B and Wang Z K 2023 Selective liquid directional steering enabled by dual-scale reentrant ratchetsInt. J. Extrem. Manuf.5025504

[47] [47] Mason G and Morrow N R 1984 Meniscus curvatures in capillaries of uniform cross-sectionJ. Chem. Soc., Faraday Trans.2375–9380

[48] [48] Jurin J 1718 II. An account of some experiments shown before the Royal Society; with an enquiry into the cause of the ascent and suspension of water in capillary tubesPhil. Trans. R. Soc.30739–47

[49] [49] Hwang S T 1977 The gauss equation in capillarityZ. Phys. Chem.105225–35

[50] [50] Boucher E A 1978 Generalized Gauss' equation and capillary thermodynamicsZ. Phys. Chem.113125–8

[51] [51] Young T 1805 III. An essay on the cohesion of fluidsPhil. Trans. R. Soc.9565–87

[52] [52] Bosanquet C H 1923 LV. On the flow of liquids into capillary tubesLondon, Edinburgh Dublin Phil. Mag. J. Sci.45525–31

Tools

Get Citation

Copy Citation Text

Wang Zhaolong, Li Yinfeng, Zhan Ziheng, Xie Mingzhu, Li Yingying, Zhang Chengqi, Dong Zhichao, Shuai Yong. Biomimetic inner helicoidal microfluidics with enhanced capillary rise for step liquid lifting mimicking transpiration[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 25505

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Aug. 6, 2024

Accepted: May. 29, 2025

Published Online: May. 29, 2025

The Author Email:

DOI:10.1088/2631-7990/ad9672

Topics