Journal of Infrared and Millimeter Waves, Volume. 43, Issue 1, 52(2024)
Recent advances in on-chip infrared polarization detection
[1] Tyo J S, Goldstein D L, Chenault D B et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 45, 5453(2006).
[2] Li L, Han W, Pi L et al. Emerging in‐plane anisotropic two‐dimensional materials[J]. InfoMat, 1, 54-73(2019).
[3] Wang Y, Wu P, Wang Z et al. Air‐Stable Low‐Symmetry Narrow‐Bandgap 2D Sulfide Niobium for Polarization Photodetection[J]. Advanced Materials, 32, 2005037(2020).
[4] Beddiar M I, Zhang X, Liu B et al. Ambipolar-To-Unipolar Conversion in Ultrathin 2D Semiconductors[J]. Small Structures, 3, 2200125(2022).
[5] Buscema M, Groenendijk D J, Blanter S I et al. Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors[J]. Nano Letters, 14, 3347-3352(2014).
[6] Liu Y, Sun T, Ma W et al. Highly responsive broadband black phosphorus photodetectors[J]. Chinese Optics Letters, 16, 020002(2018).
[7] Perello D J, Chae S H, Song S et al. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering[J]. Nature Communications, 6, 7809(2015).
[8] Mao N, Tang J, Xie L et al. Optical Anisotropy of Black Phosphorus in the Visible Regime[J]. Journal of the American Chemical Society, 138, 300-305(2016).
[9] Han F W, Zhao C X, Zhang Y M. Photoelectric properties of monolayer black phosphorus in visible regime at room temperature[J]. AIP Advances, 9, 055216(2019).
[10] Hong T, Chamlagain B, Lin W et al. Polarized photocurrent response in black phosphorus field-effect transistors[J]. Nanoscale, 6, 8978-8983(2014).
[11] Chen X, Lu X, Deng B et al. Widely tunable black phosphorus mid-infrared photodetector[J]. Nature Communications, 8, 1672(2017).
[12] Akamatsu T, Ideue T, Zhou L et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect[J]. Science, 372, 68-72(2021).
[13] Deng Y, Luo Z, Conrad N J et al. Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode[J]. ACS Nano, 8, 8292-8299(2014).
[14] Chen P, Xiang J, Yu H et al. Gate tunable MoS2–black phosphorus heterojunction devices[J]. 2D Materials, 2, 034009(2015).
[15] Jiang X, Zhang M, Liu L et al. Multifunctional black phosphorus/MoS2 van der Waals heterojunction[J]. Nanophotonics, 9, 2487-2493(2020).
[16] Hu T, Zhang R, Li J-P et al. Photodetectors based on two-dimensional MoS2 and its assembled heterostructures[J]. Chip, 1, 100017(2022).
[17] Bullock J, Amani M, Cho J et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature[J]. Nature Photonics, 12, 601-607(2018).
[18] Rasmita A, Jiang C, Jiang C et al. Tunable geometric photocurrent in van der Waals heterostructure[J]. Optica, 7, 1204-1208(2020).
[19] Chen Y, Wang Y, Wang Z et al. Unipolar barrier photodetectors based on van der Waals heterostructures[J]. Nature Electronics, 4, 357-363(2021).
[20] Wu P, Ye L, Tong L et al. Van der Waals two-color infrared photodetector[J]. Light: Science & Applications, 11, 6(2022).
[21] Chen C, Lu X, Deng B et al. Widely tunable mid-infrared light emission in thin-film black phosphorus[J]. Science Advances, 6, eaay6134(2020).
[22] Lai J, Liu X, Ma J et al. Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2[J]. Advanced Materials, 30, 1707152(2018).
[23] Ma J, Cheng B, Li L et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect[J]. Nature Communications, 13, 1-7(2022).
[24] Wang R, Li L, Tian H et al. Full telecomband covered half-wave meta-reflectarray for efficient circular polarization conversion[J]. Optics Communications, 427, 469-476(2018).
[25] Zhou J, Deng J, Shi M et al. Cavity coupled plasmonic resonator enhanced infrared detectors[J]. Applied Physics Letters, 119, 160504(2021).
[26] Jiang F, Shi M, Zhou J et al. Integrated Photonic Structure Enhanced Infrared Photodetectors[J]. Advanced Photonics Research, 2, 2000187(2021).
[27] Chen W, Zhao Z, Wang C et al. Linear polarization grating combining a circular polarization grating with a special cycloidal diffractive quarter waveplate[J]. Optics Express, 27, 33378-33390(2019).
[28] Zhou R, Ullah K, Yang S et al. Recent advances in graphene and black phosphorus nonlinear plasmonics[J]. Nanophotonics, 9, 1695-1715(2020).
[29] Tong L, Huang X, Wang P et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature[J]. Nature Communications, 11, 2308(2020).
[30] Deng W, Dai M, Wang C et al. Switchable Unipolar-Barrier Van der Waals Heterostructures with Natural Anisotropy for Full Linear Polarimetry Detection[J]. Advanced Materials, 34, 2203766(2022).
[31] Fang C, Li J, Zhou B et al. Self-Powered Filterless On-Chip Full-Stokes Polarimeter[J]. Nano Letters, 21, 6156-6162(2021).
[32] Ma C, Yuan S, Cheung P et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry[J]. Nature, 604, 266-272(2022).
[33] Xu S-Y, Ma Q, Shen H et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2[J]. Nature Physics, 14, 900-906(2018).
[34] Osterhoudt G B, Diebel L K, Gray M J et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal[J]. Nature Materials, 18, 471-475(2019).
[35] Zhang C, Wang X, Qiu L. Circularly Polarized Photodetectors Based on Chiral Materials: A Review[J]. Frontiers in Chemistry, 9, 711488(2021).
[36] Chen C, Gao L, Gao W et al. Circularly polarized light detection using chiral hybrid perovskite[J]. Nature Communications, 10, 1927(2019).
[37] Ishii A, Miyasaka T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode[J]. Science Advances, 6, eabd3274(2020).
[38] Liu Z, Zhang C, Liu X et al. Chiral Hybrid Perovskite Single‐Crystal Nanowire Arrays for High‐Performance Circularly Polarized Light Detection[J]. Advanced Science, 8, 2102065(2021).
[39] Cao Y, Li C, Deng J et al. Enhanced photodetector performance of black phosphorus by interfacing with chiral perovskite[J]. Nano Research, 15, 7492-7497(2022).
[40] Li Q, Li Z, Li N et al. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity[J]. Scientific Reports, 4, 6332(2015).
[41] Li W, Coppens Z J, Besteiro L V et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J]. Nature Communications, 6, 8379(2015).
[42] Wang M, Salut R, Lu H et al. Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas[J]. Light: Science & Applications, 8, 76(2019).
[43] Jiang Q, Du B, Jiang M et al. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2[J]. Nanoscale, 12, 5906-5913(2020).
[44] Zhou Y W, Li Z F, Zhou J et al. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors[J]. Scientific Reports, 8, 15070(2018).
[45] Chu Z, Zhou J, Dai X et al. Circular Polarization Discrimination Enhanced by Anisotropic Media[J]. Advanced Optical Materials, 8, 1901800(2020).
[46] Hu W, Ye Z, Liao L et al. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk[J]. Optics Letters, 39, 5184-5187(2014).
[47] Hu W D, Chen X S, Ye Z H et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification[J]. Applied Physics Letters, 99, 091101(2011).
[48] Chen B, Ji Z, Zhou J et al. Highly polarization-sensitive far infrared detector based on an optical antenna integrated aligned carbon nanotube film[J]. Nanoscale, 12, 11808-11817(2020).
[49] Guo S, Zhang D, Zhou J et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities[J]. Carbon, 170, 49-58(2020).
[50] Zhang D, Zhou J, Liu C et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors[J]. Journal of Applied Physics, 126, 074301(2019).
[51] Deng J, Zheng Y, Zhou J et al. Absorption enhancement in all-semiconductor plasmonic cavity integrated THz quantum well infrared photodetectors[J]. Optics Express, 28, 16427(2020).
[52] Peng J, Cumming B P, Gu M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector[J]. Optics Letters, 44, 2998(2019).
[53] Lu F, Lee J, Jiang A et al. Thermopile detector of light ellipticity[J]. Nature Communications, 7, 12994(2016).
[54] Thomaschewski M, Yang Y, Wolff C et al. On-Chip Detection of Optical Spin–Orbit Interactions in Plasmonic Nanocircuits[J]. Nano Letters, 19, 1166-1171(2019).
[55] Wei J, Li Y, Wang L et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection[J]. Nature Communications, 11, 6404(2020).
[56] Wei J, Xu C, Dong B et al. Mid-infrared semimetal polarization detectors with configurable polarity transition[J]. Nature Photonics, 15, 614-621(2021).
[57] Wei J, Chen Y, Li Y et al. Geometric filterless photodetectors for mid-infrared spin light[J]. Nature Photonics, 17, 171-178(2022).
[58] Li L, Wang J, Kang L et al. Monolithic Full-Stokes Near-Infrared Polarimetry with Chiral Plasmonic Metasurface Integrated Graphene–Silicon Photodetector[J]. ACS Nano, 14, 16634-16642(2020).
[59] Zhou C, Xie Y, Ren J et al. Spin separation based on-chip optical polarimeter via inverse design[J]. Nanophotonics, 11, 813-819(2022).
[60] Xiong Y, Wang Y, Zhu R et al. Twisted black phosphorus-based van der Waals stacks for fiber-integrated polarimeters[J]. Science Advances, 8, eabo0375(2022).
[61] Lei T, Zhou C, Wang D et al. On-Chip High-Speed Coherent Optical Signal Detection Based on Photonic Spin-Hall Effect[J]. Laser & Photonics Reviews, 16, 2100669(2022).
[62] Dai M, Wang C, Qiang B et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection[J]. Nature Communications, 13, 4560(2022).
Get Citation
Copy Citation Text
Yu-Ran ZHEN, Jie DENG, Yong-Hao BU, Xu DAI, Yu YU, Meng-Die SHI, Ruo-Wen WANG, Tao YE, Gang CHEN, Jing ZHOU. Recent advances in on-chip infrared polarization detection[J]. Journal of Infrared and Millimeter Waves, 2024, 43(1): 52
Category: Research Articles
Received: Apr. 24, 2023
Accepted: --
Published Online: Dec. 26, 2023
The Author Email: Jie DENG (dengjie@mail.sitp.ac.cn), Gang CHEN (gchen@mail.sitp.ac.cn), Jing ZHOU (jzhou@mail.sitp.ac.cn)