Laser & Optoelectronics Progress, Volume. 57, Issue 16, 161506(2020)

Video Denoising and Object Detection Based on RPCA Model with l1-TV Regularization Constraints

Guoliang Yang, Dingling Yu*, and Zhendong Lai
Author Affiliations
  • School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • show less
    Figures & Tables(6)
    Framework of proposed method
    Gaussian noise detection results. (a)(b) Static background; (c)(d) dynamic background sequence; (e) turbulent environment sequence; (f) camera shake sequence; (g) high frame rate sequence
    Gaussian noise detection results with different variances.(a) 1969 frame and (b) 2000 frame in dynamic background; (c) 1689 frame and (d) 1969 frame in static background
    • Table 1. Flow of proposed algorithm

      View table

      Table 1. Flow of proposed algorithm

      Algorithm 1:Video denoising and object detection based on RPCA model with l1-TV regularization constraints
      Input: Original Video V∈Rm×n×p, then add noise to the video to form a noisy video. Stack the noisy video frames to form O∈Rmn×p;Initialization: L0, S0, E0, F0, X0, Y0=0∈Rmn×p, k=0, μmax=1.25/‖YF, λ123>0,μ0=10-2,ρ=1.5;Output: Optimal solution(Fk, Kk)1. While not converged do2. Update Lk+1 via Eq. (12); Update Sk+1 via Eq. (15); Update Ek+1 via Eq. (17);3. Update Fk+1 via Eq. (23); Update Xk+1 via Eq. (24); Update Yk+1 via Eq. (25);4. Update μk+1=min(ρμk,μmax);5. K=K+1;6. Check the convergence condition:O-Lk-FkF2≤10-8OF2;7. End
    • Table 2. Measurement values of three indicators of different algorithms

      View table

      Table 2. Measurement values of three indicators of different algorithms

      ImageDECOLORTVRPCAIBTLR l1 TVProposed
      PRFPRFPRFPRFPRF
      Fig. 2(a)0.320.540.440.830.570.690.650.510.570.460.700.630.730.890.80
      Fig. 2(b)0.840.450.590.790.450.570.500.630.560.720.800.760.880.720.79
      Fig. 2(c)0.900.510.650.900.830.860.630.650.640.460.600.510.900.860.88
      Fig. 2(d)0.700.690.690.820.510.660.620.310.540.730.870.800.700.930.85
      Fig. 2(e)0.220.650.320.780.710.750.720.800.760.730.860.790.830.870.85
      Fig. 2(f)0.850.530.680.820.780.800.530.270.360.750.850.800.890.940.91
      Fig.2(g)0.890.510.640.900.430.580.690.650.670.630.660.640.660.660.66
    • Table 3. Comparison of running time of five algorithmss

      View table

      Table 3. Comparison of running time of five algorithmss

      MethodFig. 2(a)Fig. 2(b)Fig. 2(c)Fig. 2(d)Fig. 2(e)Fig. 2(f)Fig. 2(g)
      Proposed20.0424.3129.9515.3018.2313.6718.19
      DECOLOR30.8329.1237.9025.9817.9823.9537.63
      IBT57.4448.6492.5687.6376.5489.6377.98
      TVRPCA55.2343.5663.7278.0363.8374.3876.93
      LRl1TV31.3221.4230.4324.7810.5120.6621.58
    Tools

    Get Citation

    Copy Citation Text

    Guoliang Yang, Dingling Yu, Zhendong Lai. Video Denoising and Object Detection Based on RPCA Model with l1-TV Regularization Constraints[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161506

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 2, 2019

    Accepted: Dec. 11, 2019

    Published Online: Aug. 5, 2020

    The Author Email: Dingling Yu (ydl_1001@163.com)

    DOI:10.3788/LOP57.161506

    Topics