Photonics Research, Volume. 9, Issue 6, 916(2021)

Characterization of dynamic distortion in LED light output for optical wireless communications

Anton Alexeev1, Jean-Paul M. G. Linnartz1,2, Kumar Arulandu2, and Xiong Deng1、*
Author Affiliations
  • 1Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
  • 2Signify (Philips Lighting) Research, HTC 34 (WB), 5656 AE Eindhoven, The Netherlands
  • show less
    References(73)

    [1] J. B. Carruthers. Wireless infrared communications. Wiley Encyclopedia of Telecommunications(2003).

    [2] M. Kavehrad. Sustainable energy-efficient wireless applications using light. IEEE Commun. Mag., 48, 66-73(2010).

    [3] T. Komine, M. Nakagawa. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron., 50, 100-107(2004).

    [4] H. Haas. High-speed wireless networking using visible light. SPIE Newsroom(2013).

    [5] L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, L. Gyongyosi. Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless. Proc. IEEE, 100, 1853-1888(2012).

    [6] R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Dohler, P. Heremans. Large-signal-modulation of high-efficiency light-emitting diodes for optical communication. IEEE J. Quantum Electron., 36, 1445-1453(2000).

    [7] X. Deng, S. Mardanikorani, Y. Wu, K. Arulandu, B. Chen, A. M. Khalid, J.-P. M. G. Linnartz. Mitigating LED nonlinearity to enhance visible light communications. IEEE Trans. Commun., 66, 5593-5607(2018).

    [8] J.-P. M. G. Linnartz, X. Deng, A. Alexeev, S. Mardanikorani. Wireless communication over an LED channel. IEEE Commun. Mag., 58, 77-82(2020).

    [9] C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, S. P. DenBaars. 2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Opt. Express, 23, 29779-29787(2015).

    [10] I. Dursun, C. Shen, M. R. Parida, J. Pan, S. P. Sarmah, D. Priante, N. Alyami, J. Liu, M. I. Saidaminov, M. S. Alias, A. L. Abdelhady, T. K. Ng, O. F. Mohammed, B. S. Ooi, O. M. Bakr. Perovskite nanocrystals as a color converter for visible light communication. ACS Photon., 3, 1150-1156(2016).

    [11] D. C. O’Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, S. Randel. Visible light communications: challenges and possibilities. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1-5(2008).

    [12] H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, D. C. O’Brien. Visible light communication using a blue GaN μLED and fluorescent polymer color converter. IEEE Photon. Technol. Lett., 26, 2035-2038(2014).

    [13] M. T. Sajjad, P. P. Manousiadis, H. Chun, D. A. Vithanage, S. Rajbhandari, A. L. Kanibolotsky, G. Faulkner, D. Obrien, P. J. Skabara, I. D. Samuel, G. A. Turnbull. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS Photon., 2, 194-199(2015).

    [14] G. M. Farinola, R. Ragni. Electroluminescent materials for white organic light emitting diodes. Chem. Soc. Rev., 40, 3467-3482(2011).

    [15] H. L. Minh, Z. Ghassemlooy, D. O’Brien, G. Faulkner. Indoor gigabit optical wireless communications: challenges and possibilities. 12th International Conference on Transparent Optical Networks (ICTON), 1-6(2010).

    [16] J. Grubor, S. Lee, K. Langer. Wireless high-speed data transmission with phosphorescent white light LEDs. 33rd European Conference and Exhibition of Optical Communication (ECOC), 3-4(2007).

    [17] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun., 33, 1738-1749(2015).

    [18] S. Mardani, M. Strassburg, A. Alexeev, J. K. Kim, M. R. Krames, J.-P. Linnartz. Modeling and compensating dynamic nonlinearities in LED photon-emission rates to enhance OWC. Light-Emitting Devices, Materials, and Applications, 30(2019).

    [19] S. Mardani, A. Khalid, F. M. Willems, J.-P. Linnartz. Effect of blue filter on the SNR and data rate for indoor visible light communication system. European Conference on Optical Communication (ECOC), 1-3(2017).

    [20] S. Mardani, J.-P. Linnartz. Capacity of the first-order low-pass channel with power constraint. Symposium on Information Theory and Signal Processing in the Benelux, 1-6(2020).

    [21] S. Mardani, X. Deng, J.-P. Linnartz. Efficiency of power loading strategies for visible light communication. IEEE Globecom Workshops, 1-6(2019).

    [22] D. Bykhovsky, S. Arnon. An experimental comparison of different bit-and-power-allocation algorithms for DCO-OFDM. J. Lightwave Technol., 32, 1559-1564(2014).

    [23] H. Elgala, R. Mesleh, H. Haas, B. Pricope. OFDM visible light wireless communication based on white LEDs. IEEE Vehicular Technology Conference, 2185-2189(2007).

    [24] J. Armstrong. OFDM for optical communications. J. Lightwave Technol., 27, 189-204(2009).

    [25] K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, G. T. Zhou. Nonlinear distortion mitigation in visible light communications. IEEE Wireless Commun., 22, 36-45(2015).

    [26] P. A. Haigh, Z. Ghassemlooy, S. Rajbhandari, I. Papakonstantinou, W. Popoola. Visible light communications: 170  Mb/s using an artificial neural network equalizer in a low bandwidth white light configuration. J. Lightwave Technol., 32, 1807-1813(2014).

    [27] S. Dimitrov, H. Haas. Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Lightwave Technol., 31, 918-929(2013).

    [28] J. G. Smith. The information capacity of amplitude and variance constrained scalar Gaussian channels. Inf. Control, 18, 203-219(1971).

    [29] C. Chow, C. Yeh, Y. Liu, Y. Liu. Digital signal processing for light emitting diode based visible light communication. IEEE Photon. Soc. Newslett., 26, 9-13(2012).

    [30] E. F. Schubert. Light-Emitting Diodes(2006).

    [31] D. Kwon, S. Yang, S. Han. Modulation bandwidth enhancement of white-LED-based visible light communications using electrical equalizations. Proc. SPIE, 9387, 93870T(2015).

    [32] S. Mardanikorani, X. Deng, J.-P. M. G. Linnartz. Sub-carrier loading strategies for DCO-OFDM LED communication. IEEE Trans. Commun., 68, 1101-1117(2020).

    [33] H. Elgala, R. Mesleh, H. Haas. Predistortion in optical wireless transmission using OFDM. 9th International Conference on Hybrid Intelligent Systems (HIS), 184-189(2009).

    [34] I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, T. Sphicopoulos. Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach. J. Lightwave Technol., 27, 4970-4978(2009).

    [35] M. Schetzen. Nonlinear system modeling based on the Wiener theory. Proc. IEEE, 69, 1557-1573(1981).

    [36] H. Qian, S. Yao, S. Cai, T. Zhou. Adaptive postdistortion for nonlinear LEDs in visible light communications. IEEE Photon. J., 6, 7901508(2014).

    [37] G. Zhang, J. Zhang, X. Hong, S. He. Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes. Opt. Express, 25, 3780-3794(2017).

    [38] T. Kamalakis, J. W. Walewski, G. Mileounis. Empirical Volterra-series modeling of commercial light-emitting diodes. J. Lightwave Technol., 29, 2146-2155(2011).

    [39] G. Stepniak, J. Siuzdak, P. Zwierko. Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE. IEEE Photon. Technol. Lett., 25, 1597-1600(2013).

    [40] Z. Peng, C. Cheng. Volterra series theory: a state-of-the-art review. Chin. Sci. Bull., 60, 1874-1888(2015).

    [41] J. Kim, K. Konstantinou. Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett., 37, 1417-1418(2001).

    [42] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, C. R. Giardina. A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun., 52, 159-165(2004).

    [43] W. Zhao, Q. Guo, J. Tong, J. Xi, Y. Yu, P. Niu, X. Sun. Orthogonal polynomial-based nonlinearity modeling and mitigation for LED communications. IEEE Photon. J., 8, 7905312(2016).

    [44] M. Kong, Y. Chen, R. Sarwar, B. Sun, Z. Xu, J. Han, J. Chen, H. Qin, J. Xu. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal. Opt. Express, 26, 3087-3097(2018).

    [45] Y. Huang, Z. Liu, X. Yi, Y. Guo, S. Wu, G. Yuan, J. Wang, G. Wang, J. Li. Overshoot effects of electron on efficiency droop in InGaN/GaN MQW light-emitting diodes. AIP Adv., 6, 045219(2016).

    [46] T. P. Lee. Effect of junction capacitance on the rise time of LED’s and on the turn-on delay of injection lasers. Bell Syst. Tech. J., 54, 53-68(1975).

    [47] R. S. Tucker, D. J. Pope. Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser. IEEE J. Quantum Electron., 19, 1179-1183(1983).

    [48] R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers. High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron., 28, 1990-2008(1992).

    [49] S. Weisser, I. Esquivias, P. J. Tasker, J. D. Ralston, B. Romero, J. Rosenzweig. Impedance characteristics of quantum-well lasers. IEEE Photon. Technol. Lett., 6, 1421-1423(1994).

    [50] I. Esquivias, S. Weisser, B. Romero, J. Ralston, J. Rosenzweig. Carrier dynamics and microwave characteristics of GaAs-based quantum-well lasers. IEEE J. Quantum Electron., 35, 635-646(1999).

    [51] A. David, C. A. Hurni, N. G. Young, M. D. Craven. Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures. Appl. Phys. Lett., 109, 033504(2016).

    [52] D. Sizov, R. Bhat, A. Zakharian, K. Song, D. Allen, C. Zah. Impact of carrier transport on aquamarine–green laser performance. Appl. Phys. Express, 3, 122101(2010).

    [53] S. Hammersley, M. J. Davies, P. Dawson, R. A. Oliver, M. J. Kappers, C. J. Humphreys. Carrier distributions in InGaN/GaN light-emitting diodes. Phys. Status Solidi B, 252, 890-894(2015).

    [54] S. Karpov. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron., 47, 1293-1303(2009).

    [55] R. Stevenson. The LED’s dark secret. IEEE Spectr., 46, 26-31(2009).

    [56] M. A. Hopkins, D. W. Allsopp, M. J. Kappers, R. A. Oliver, C. J. Humphreys. The ABC model of recombination reinterpreted: impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes. J. Appl. Phys., 122, 234505(2017).

    [57] Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, Y. Park. Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett., 97, 133507(2010).

    [58] P. Prajoon, D. Nirmal, M. A. Menokey, J. C. Pravin. Temperature-dependent efficiency droop analysis of InGaN MQW light-emitting diode with modified ABC model. J. Comput. Electron., 15, 1511-1520(2016).

    [59] J. M. Shah, Y. L. Li, T. Gessmann, E. F. Schubert. Experimental analysis and theoretical model for anomalously high ideality factors (n ≫ 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys., 94, 2627-2630(2003).

    [60] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, D. D. Koleske. The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett., 94, 081113(2009).

    [61] I. E. Titkov, S. Y. Karpov, A. Yadav, V. L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H.-J. Lugauer, E. U. Rafailov. Temperature-dependent internal quantum efficiency of blue high-brightness light-emitting diodes. IEEE J. Quantum Electron., 50, 911-920(2014).

    [62] H. Y. Ryu, H. S. Kim, J. I. Shim. Rate equation analysis of efficiency droop in InGaN light-emitting diodes. Appl. Phys. Lett., 95, 081114(2009).

    [63] D. Schiavon, M. Binder, M. Peter, B. Galler, P. Drechsel, F. Scholz. Wavelength-dependent determination of the recombination rate coefficients in single-quantum-well GaInN/GaN light emitting diodes. Phys. Status Solidi B, 250, 283-290(2013).

    [64] K. Arulandu, J.-P. M. G. Linnartz, X. Deng. Enhanced visible light communication modulator with dual feedback control. IEEE J. Emerging Sel. Top. Power Electron., 9, 123-137(2019).

    [65] X. Deng, K. Arulandu, Y. Wu, S. Mardanikorani, G. Zhou, J.-P. M. G. Linnartz. Modeling and analysis of transmitter performance in visible light communications. IEEE Trans. Veh. Technol., 68, 2316-2331(2019).

    [66] A. David, M. J. Grundmann. Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett., 96, 103504(2010).

    [67] K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, S. Y. Karpov. Simulation of light-emitting diodes for new physics understanding and device design. Proc. SPIE, 8278, 827819(2012).

    [68] S. Mardanikorani, X. Deng, J.-P. M. G. Linnartz, A. Khalid. Compensating dynamic nonlinearities in LED photon emission to enhance optical wireless communication. IEEE Trans. Veh. Technol., 70, 1317-1331(2021).

    [69] H. Schneider, K. V. Klitzing. Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure. Phys. Rev. B, 38, 6160-6165(1988).

    [70] A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, W. Y. Jan. Quantum well carrier sweep out: relation to electroabsorption and exciton saturation. IEEE J. Quantum Electron., 27, 2281-2295(1991).

    [71] P. H. Binh, V. D. Trong, P. Renucci, X. Marie. Improving OOK modulation rate of visible LED by peaking and carrier sweep-out effects using n-Schottky diodes-capacitance circuit. J. Lightwave Technol., 31, 2578-2583(2013).

    [72] J. H. Park, J. W. Lee, D. Y. Kim, J. Cho, E. F. Schubert, J. Kim, J. Lee, Y.-I. Kim, Y. Park, J. K. Kim. Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes. J. Appl. Phys., 119, 023101(2016).

    [73] H. Fu, Y. Zhao. Efficiency droop in GaInN/GaN LEDs. Nitride Semiconductor Light-Emitting Diodes (LEDs): Materials, Technologies, and Applications, 299-325(2017).

    Tools

    Get Citation

    Copy Citation Text

    Anton Alexeev, Jean-Paul M. G. Linnartz, Kumar Arulandu, Xiong Deng, "Characterization of dynamic distortion in LED light output for optical wireless communications," Photonics Res. 9, 916 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Dec. 1, 2020

    Accepted: Mar. 19, 2021

    Published Online: May. 13, 2021

    The Author Email: Xiong Deng (x.deng@tue.nl)

    DOI:10.1364/PRJ.416269

    Topics