Acta Optica Sinica, Volume. 43, Issue 12, 1228008(2023)

Target Classification of Hyperspectral Lidar Based on Optimization Selection of Spatial-Spectral Features

Bowen Chen1,2,3, Shuo Shi2,3,4、*, Wei Gong2,3,4, Qian Xu2, Xingtao Tang2, Sifu Bi2, and Biwu Chen5
Author Affiliations
  • 1Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, Hubei, China
  • 2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, Hubei, China
  • 3Electronic Information School, Wuhan University, Wuhan 430079, Hubei, China
  • 4Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, Hubei, China
  • 5Shanghai Radio Equipment Research Institute, Shanghai 201109, China
  • show less
    Figures & Tables(12)
    System prototype of hyperspectral lidar
    Scanning scene of 14 different targets
    Target classification processes based on hyperspectral lidar for spatial-spectral feature optimization selection
    True color reconstruction result based on optimal band combination
    Real categories of fourteen targets
    Target classification results of the first four classification strategies. (a) 32-channel spectral information and elevation value; (b) spectral indices; (c) geometric features; (d) spatial-spectral feature combination
    Target classification results of the 5th and 6th classification strategies. (a) Spatial-spectral features selected by marine predator algorithm; (b) optimal spatial-spectral feature combination
    Correlation of spatial-spectral features
    • Table 1. Vegetation indices used in this study

      View table

      Table 1. Vegetation indices used in this study

      Vegetation indexFormulaReference
      Differential vegetation index(DVI)R775-R67525
      Ratio vegetation index(RVI)R775R67526
      Enhanced vegetation index(EVI)2.5(R775-R675)1+R775+2.4R67527
      Soil adjusted vegetation index(SAVI)1.5(R775-R675)R775+R675+0.528
      Normalized differential vegetation index(NDVI)R775-R675R775+R67529
      Ratio normalized differential vegetation index(RNDVI)R7752-R675R775+R675230
      Red-edge chlorophyll index(CIred-edge)R745R705-131
      Modified chlorophyll absorption ratio index(MCARI)R695R665-0.2(R695-R495)R695R66532
      Plant senescence reflectance index(PSRI)R675-R495R74533
      Triangular vegetation index(TVI)0.5120R745-R495-200R665-R54534
    • Table 2. Color indices used in this study

      View table

      Table 2. Color indices used in this study

      Color indexFormulaReference
      Excess green index(ExG)2G-R-B38
      Normalized green‑red difference index(NGRDI)G-RG+R39
      Normalized green‑blue difference index(NGBDI)G-BG+B40
      Excess red index(ExR)1.4R-G41
      Excess green minus excess red(ExGR)ExG-ExR42
      Visible atmospherically resistant index(VARI)G-RG+R-B43
      Visible‑band diference vegetation index(VDVI)2G-R-B2G+R+B44
      Modified green red vegetation index(MGRVI)G2-R2G2+R245
      Red green blue vegetation index(RGBVI)G2-RBG2+RB45
      Normalized redness intensity(NRI)RG+R+B46
      Green minus red difference index(GMR DI)G-R47
    • Table 3. Six different target classification strategies

      View table

      Table 3. Six different target classification strategies

      Target classification strategyClassification feature
      1Original spectral information and elevation
      2Spectral index features
      3Spatial features
      4Original spectral information,elevation,spectral index features,and spatial features
      5Spatial‑spectral features selected by marine predator algorithm
      6Optimal spatial-spectral feature combination
    • Table 4. Classification accuracy summary

      View table

      Table 4. Classification accuracy summary

      Strategy123456
      OA /%91.4990.7389.5695.5796.6697.13
      AA /%77.7478.2768.2684.3787.4489.05
      Kappa0.89340.88370.86930.93800.95770.9642
      Time /s4.72(±0.32)4.18(±0.45)3.53(±0.22)5.16(±0.47)4.06(±0.18)3.61(±0.17)
      ClassPRPRPRPRPRPR
      10.980.960.980.951.000.991.001.001.001.001.001.00
      20.900.910.880.870.840.750.920.920.920.970.930.96
      30.820.790.750.800.680.760.830.880.890.910.910.92
      40.930.910.930.910.880.850.970.930.980.930.990.95
      50.810.880.840.880.920.930.910.930.940.950.910.97
      60.930.880.770.830.870.790.960.930.990.970.990.99
      70.880.860.900.840.730.700.950.910.970.960.980.95
      80.730.770.770.760.360.590.790.800.830.820.880.91
      90.900.930.900.930.870.920.940.960.940.970.970.97
      100.690.710.570.650.670.670.820.940.880.940.910.99
      110.670.900.770.810.330.510.860.880.860.890.890.86
      120.930.870.900.910.910.900.960.950.970.950.980.94
      130.331.000.400.750.200.330.400.860.400.860.470.88
      140.400.840.620.820.290.440.650.850.670.920.650.92
    Tools

    Get Citation

    Copy Citation Text

    Bowen Chen, Shuo Shi, Wei Gong, Qian Xu, Xingtao Tang, Sifu Bi, Biwu Chen. Target Classification of Hyperspectral Lidar Based on Optimization Selection of Spatial-Spectral Features[J]. Acta Optica Sinica, 2023, 43(12): 1228008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Sep. 19, 2022

    Accepted: Nov. 29, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Shi Shuo (shishuo@whu.edu.cn)

    DOI:10.3788/AOS221717

    Topics