Laser Journal, Volume. 46, Issue 2, 106(2025)
Pixel-level recognition algorithm of lane embedded with attention mechanism
[1] [1] Dhaif Z S, El Abbadi N K. A Review of Machine Learning Techniques Utilised in Self-Driving Cars[J]. Iraqi Journal For Computer Science and Mathematics, 2024, 5(1): 205-219
[2] [2] Sun T Y, Tsai S J, Chan V. HSI color model based lanemarking detection[C]//IEEE Intelligent Transportation Systems Conference. IEEE, 2006.
[3] [3] Aly M. Real time detection of lane markers in urban streets[C]//2008 IEEE intelligent vehicles symposium. IEEE, 2008: 7-12.
[4] [4] Chiu K Y, Lin S F. Lane detection using color-based segmentation[C]//IEEE Proceedings. Intelligent Vehicles Symposium, 2005. IEEE, 2005: 706-711.
[5] [5] Batista M P, Shinzato P Y, Wolf D F, et al. Lane detection and estimation using perspective image[C]//2014 Joint Conference on Robotics: SBR-LARS Robotics Symposium and Robocontrol. IEEE, 2014: 25-30.
[6] [6] Huang Y, Li Y, Hu X, et al. Lane detection based on inverse perspective transformation and Kalman filter[J]. KSII Transactions on Internet and Information Systems (TIIS), 2018, 12(2): 643-661.
[7] [7] Muthalagu R, Bolimera A, Kalaichelvi V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers & Electrical Engineering, 2020, 85: 106653.
[10] [10] Su J, Chen C, Zhang K, et al. Structure guided lane detection[J]. arxiv preprint arxiv: 2105.05403, 2021.
[11] [11] Wang Z, Ren W, Qiu Q. LaneNet: Real-Time Lane Detection Networks for Autonomous Driving[J]. arxiv preprint arxiv: 1807.01726, 2018.
[12] [12] Chen P R, Lo S Y, Hang H M, et al. Efficient Road Lane Marking Detection with Deep Learning[C]//2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 2018.
[13] [13] Neven D, De Brabandere B, Georgoulis S, et al. Towards End-to-End Lane Detection: an Instance Segmentation Approach[J]. IEEE, 2018.
[14] [14] De Brabandere B, Neven D, Van Gool L. Semantic Instance Segmentation with a Discriminative Loss Function[J]. arxiv preprint arxiv: 1708.02551, 2017.
[15] [15] Tang J, Li S, Liu P. A review of lane detection methods based on deep learning[J]. Pattern Recognition, 2021, 111: 107623.
[17] [17] Simonyan, Karen, and AndrewZisser - man. Very deep convolutional networks for large - scale image recognition[J]. arxiv preprint arxiv: 1409.1556, 2014.
[19] [19] Zekun G, Chao M, Zhumu F, et al. End-to-end lane detection with convolution and transformer[J]. Multimedia Tools and Applications, 2023, 82(19): 29607-29627.
[20] [20] Ao Y, Li P, Wen L, et al. Fully Convolutional Networks for Street Fur- niture Identification in Panorama Images[J]. Journal of Geodesy and Geoinforma- tion Science, 2022, 5(04): 59-71.
[21] [21] Yifang H, Peng S, Haitao H, et al. Senet: spatial information enhancement for se- mantic segmentation neural networks[J]. The Visual Computer, 2023, 40(5): 3427-3440.
[22] [22] Gao Z, Wang Q, & Li P. Global second- order pooling convolutional networks[C]//2019 IEEE/CVF In Proceedings of the Conference on computer vision and pat tern recognition. IEEE/CVF, 2019: 3024-3033.
[23] [23] Olaf R, Philipp F, Thomas B. U-Net: Convolutional Networks for Biomedical Image Segmentation[J]. arxiv preprint arXiv: 1505.04597, 2014.
[24] [24] Vijay B, Alex K, Roberto C. SegNet: A Deep Convolutional Encoder - Decoder Architecture for Image Segmentation[J]. arxiv preprint arXiv: 1511.00561, 2016.
[25] [25] Tu Z, Yifei H, Yang L, et al. CLRNet: Cross Layer Refinement Network for Lane Detection[J] arxiv preprint arXiv: 2203.10350, 2022.
Get Citation
Copy Citation Text
XIAO Tingshu, LUO Xiaolong, XIANG Longwei, CHEN Yangguang, WANG Pengyan. Pixel-level recognition algorithm of lane embedded with attention mechanism[J]. Laser Journal, 2025, 46(2): 106
Category:
Received: Aug. 11, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: LUO Xiaolong (lxl2001181@163.com)