Journal of Quantum Optics, Volume. 29, Issue 3, 30702(2023)
State Transition of Solitons Induced by Relative Phase on a Plane Wave Background in Optical Fiber
[1] [1] YANG J. Nonlinear Waves in Integrable and Nonintegrable Systems[M]. SIAM, Philadelphia, 2010.
[4] [4] RUSSELL J S. Report on waves[A]. 14th meeting of the british association for advancement of science[C]. London: John Murray, 1844: 311(390).
[5] [5] GERTJERENKEN B, BILLAM T P, BLACKLEY C L, et al. Generating Mesoscopic Bell States via Collisions of Distinguishable Quantum Bright Solitons[J]. Physical Review Letters, 2013, 111(10):100406. DOI: 10.1103/PhysRevLett.111.100406.
[6] [6] HELM J L, CORNISH S L, GARDINER S A. Sagnac Interferometry Using Bright Matter-wave Solitons[J]. Physical Review Letters, 2015, 114(13):134101. DOI: 10.1103/PhysRevLett.114.134101.
[7] [7] POLO J, AHUFINGER V. Soliton-based Matter-wave Interferometer[J]. Physical Review A, 2013, 88(5):053628. DOI: 10.1103/PhysRevA.88.053628.
[8] [8] SOLLI D R, ROPERS C, JALALI B. Active Control of Rogue Waves for Stimulated Supercontinuum Generation[J]. Physical Review Letters, 2008, 101(23):233902. DOI: 10.1103/PhysRevLett.101.233902.
[9] [9] ZHANG Y, BELICC M R, ZHENG H, et al. Nonlinear Talbot Effect of Rogue Waves[J]. Physical Review E, 2014, 89(3):032902. DOI: 10.1103/PhysRevE.89.032902.
[10] [10] ZHANG Y, BELICC M R, PETROVICC M S, et al. Two-dimensional Linear and Nonlinear Talbot Effect From Rogue Waves[J]. Physical Review E, 2015, 91(3):032916. DOI: 10.1103/PhysRevE.91.032916.
[11] [11] FRISQUET B, CHABCHOUB A, FATOME J, et al. Two-stage Linear-nonlinear Shaping of an Optical Frequency Comb as Rogue Nonlinear Schrdinger Equationm Solution Generator[J]. Physical Review A, 2014, 89(2):023821. DOI: 10.1103/PhysRevA.89.023821.
[12] [12] FATOME J, KIBLER B, FINOT C. High-quality Optical Pulse Train Generator Based on Solitons on Finite Background[J]. Optics Letters, 2013, 38(10):1663-1665. DOI: 10.1364/OL.38.001663.
[13] [13] YANG G, WANG Y, QIN Z, et al. Breatherlike Solitons Extracted From the Peregrine Rogue Wave[J]. Physical Review E, 2014, 90(6):062909. DOI: PhysRevE.90.062909.
[14] [14] ZHAO L C. Beating Effects of Vector Solitons in Bose-Einstein Condensates[J]. Physical Review E, 2018, 97(6):062201. DOI: 10.1103/PhysRevE.97.062201.
[15] [15] AGRAWAL G P. Nonlinear fiber optics[M]. 4th ed. Academic press, 2007; Agrawal G P. Nonlinear fiber optics: its history and recent progress [Invited][J]. JOSA B, 2011, 28(12):A1-A10. DOI: 10.1364/JOSAB.28.0000A1.
[16] [16] HIROTA R. Exact envelope-soliton solutions of a nonlinear wave equation[J]. Journal of Mathematical Physics, 1973, 14(7):805-809. DOI: 10.1063/1.1666399.
[18] [18] AGRAWAL G P. Nonlinear Fiber Optics[M]. Nonlinear Science at the Dawn of the 21st Century. Springer, Berlin: Heidelberg, 2000:195-211.
[19] [19] BILLAM T P, WEISS C. These Crashing Waves[J]. Nature Physics, 2014, 10(12):902-903. DOI: 10.1038/nphys3162.
[20] [20] FRISQUET B, KIBLER B, MILLOT G. Collision of Akhmediev Breathers in Nonlinear Fiber Optics[J]. Physical Review X, 2013, 3(4):041032. DOI: 10.1103/PhysRevX.3.041032.
[21] [21] QIN Y H, ZHAO L C, LING L. Nondegenerate Bound-state Solitons in Multicomponent Bose-Einstein Condensates[J]. Physical Review E, 2019, 100(2):022212. DOI: 10.1103/PhysRevE.100.022212.
[22] [22] ZHAO L C, LING L, YANG Z Y, et al. Tunneling Dynamics Between Atomic Bright Solitons[J]. Nonlinear Dynamics, 2017, 88(4):2957-2967. DOI: 10.1007/s11071-017-3424-2.
[23] [23] YANG G, LI L, JIA S. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton[J]. Physical Review E, 2012, 85(4):046608. DOI: 10.1103/PhysRevE.85.046608.
[24] [24] TAO Y, HE J. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation[J]. Physical Review E, 2012, 85(2):026601.
[25] [25] CHOWDURY A, ANKIEWICZ A, AKHMEDIEV N. Moving breathers and breather-to-soliton conversions for the Hirota equation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2180):20150130. DOI: 10.1098/rspa.2015.0130.
[26] [26] LIU C, YANG Z Y, ZHAO L C, et al. State transition induced by higher-order effects and background frequency[J]. Physical Review E, 2015, 91(2):022904. DOI: 10.1103/PhysRevE.91.022904.
[27] [27] CHOWDURY A, KEDZIORA D J, ANKIEWICZ A, et al. Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrdinger hierarchy[J]. Physical Review E, 2015, 91(3):032928. DOI: 10.1103/PhysRevE.91.032928.
[28] [28] WANG L, ZHANG J H, WANG Z Q, et al. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrdinger equation[J]. Physical Review E, 2016, 93(1):012214. DOI: 10.1103/PhysRevE.93.012214.
[29] [29] ERKINTALO M, HAMMANI K, KIBLER B, et al. Higher-order modulation instability in nonlinear fiber optics[J]. Physical Review Letters, 2011, 107(25):253901. DOI: 10.1103/PhysRevLett.107.253901.
[30] [30] HE J S, ZHANG H R, WANG L H, et al. Generating mechanism for higher-order rogue waves[J]. Physical Review E, 2013, 87(5):052914. DOI: 10.1103/PhysRevE.87.052914.
[31] [31] ZHAO L C, LING L, YANG Z Y, et al. Properties of the temporal-spatial interference pattern during soliton interaction[J]. Nonlinear Dynamics, 2016, 83(1-2):659-665. DOI: 10.1007/s11071-015-2354-0.
[32] [32] LIU C, YANG Z Y, ZHAO L C, et al. Symmetric and asymmetric optical multipeak solitons on a continuous wave background in the femtosecond regime[J]. Physical Review E, 2016, 94(4):042221. DOI: 10.1103/PhysRevE.94.042221.
Get Citation
Copy Citation Text
REN Yang, CAO Xin-wei. State Transition of Solitons Induced by Relative Phase on a Plane Wave Background in Optical Fiber[J]. Journal of Quantum Optics, 2023, 29(3): 30702
Received: Feb. 24, 2023
Accepted: --
Published Online: Apr. 7, 2024
The Author Email: