Acta Optica Sinica, Volume. 43, Issue 22, 2213002(2023)

Multipole Method Analysis of Waveguides Based on Graphene-Coated Double Elliptical and Cylindrical Parallel Nanowires

Yida Du1, Ning Li1, Wenrui Xue1、*, Huihui Li1, Yue Zhang1, and Changyong Li1,2,3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi , China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, Shanxi , China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    References(39)

    [1] Huang C C, Chang R J, Cheng C W. Ultra-low-loss mid-infrared plasmonic waveguides based on multilayer graphene metamaterials[J]. Nanomaterials, 11, 2981(2021).

    [2] Ye L F, Sui K H, Liu Y H et al. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation[J]. Optics Express, 26, 15935-15947(2018).

    [3] Jafari M R, Omidi M. The effect of quantum ring size on shifting the absorption coefficient from infrared region to ultraviolet region[J]. Applied Physics A, 125, 466(2019).

    [4] Jafari M R, Ebrahimi F, Nooshirvani M. Subwavelength electromagnetic energy transport by stack of metallic nanorings[J]. Journal of Applied Physics, 108, 054313(2010).

    [5] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [6] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 6, 749-758(2012).

    [7] Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009).

    [8] Christensen J, Manjavacas A, Thongrattanasiri S et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 6, 431-440(2012).

    [9] Jabbarzadeh F, Habibzadeh-Sharif A. High performance dielectric loaded graphene plasmonic waveguide for refractive index sensing[J]. Optics Communications, 479, 126419(2021).

    [10] Dai Y Y, Zhu X L, Mortensen N A et al. Nanofocusing in a tapered graphene plasmonic waveguide[J]. Journal of Optics, 17, 065002(2015).

    [11] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013).

    [12] Gonçalves P A D, Dias E J C, Xiao S S et al. Graphene plasmons in triangular wedges and grooves[J]. ACS Photonics, 3, 2176-2183(2016).

    [13] Zhou Y, Zhu Y Y, Zhang K et al. Plasmonic band structures in doped graphene tubes[J]. Optics Express, 25, 12081-12089(2017).

    [14] Xu Y, Li F, Kang Z et al. Hybrid graphene-silicon based polarization-insensitive electro-absorption modulator with high-modulation efficiency and ultra-broad bandwidth[J]. Nanomaterials, 9, 157(2019).

    [15] Liao B X, Guo X D, Hu H et al. Ultra-compact graphene plasmonic filter integrated in a waveguide[J]. Chinese Physics B, 27, 094101(2018).

    [16] Wang J Q, Xing Z K, Chen X et al. Recent progress in waveguide-integrated graphene photonic devices for sensing and communication applications[J]. Frontiers in Physics, 8, 37(2020).

    [17] Ding Y, Guan X, Zhu X et al. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides[J]. Nanoscale, 9, 15576-15581(2017).

    [18] Chen J J, Zeng Y, Xu X B et al. Plasmonic absorption enhancement in elliptical graphene arrays[J]. Nanomaterials, 8, 175(2018).

    [19] Jabbarzadeh F, Habibzadeh-Sharif A. Double V-groove dielectric loaded plasmonic waveguide for sensing applications[J]. Journal of the Optical Society of America B, 36, 690-696(2019).

    [20] He S L, Zhang X Z, He Y R. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI[J]. Optics E xpress, 21, 30664-30673(2013).

    [21] Zhai L, Xue W R, Yang R C et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 35, 1123002(2015).

    [22] Zhao T, Hu M, Zhong R B et al. Plasmon modes of circular cylindrical double-layer graphene[J]. Optics Express, 24, 20461-20471(2016).

    [23] Liu J P, Zhai X, Xie F et al. Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene[J]. Journal of Lightwave Technology, 35, 1971-1979(2017).

    [24] Cheng X, Xue W R, Wei Z Z et al. Mode analysis of a confocal elliptical dielectric nanowire coated with double-layer graphene[J]. Optics Communications, 452, 467-475(2019).

    [25] Li H H, Xue W R, Li N et al. Mode properties of elliptical dielectric waveguide with nested eccentric hollow cylinder coated with graphene[J]. Acta Physica Sinica, 71, 108101(2022).

    [26] Li N, Xue W R, Dong H Y et al. Mode analysis of hybrid nanoparallel wire waveguides based on graphene surface plasmons[J]. Journal of Quantum Optics, 28, 158-169(2022).

    [27] Lu H, Mao D, Zeng C et al. Plasmonic Fano spectral response from graphene metasurfaces in the MIR region[J]. Optical Materials Express, 8, 1058-1068(2018).

    [28] Nikitin A Y, Guinea F, Garcia-Vidal F J et al. Fields radiated by a nanoemitter in a graphene sheet[J]. Physical Review B, 84, 195446(2011).

    [29] Tong L M, Gattass R R, Ashcom J B et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 426, 816-819(2003).

    [30] Tong L M, Hu L L, Zhang J J et al. Photonic nanowires directly drawn from bulk glasses[J]. Optics Express, 14, 82-87(2006).

    [31] Zhang A Q, Zheng G F, Lieber C M[M]. Nanowires: building blocks for nanoscience and nanotechnology(2016).

    [32] Chen K, Zhou X, Cheng X et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction[J]. Nature Photonics, 13, 754-759(2019).

    [33] Chen B G, Meng C, Yang Z Y et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 22, 24276-24285(2014).

    [34] Erricolo D, Carluccio G. Algorithm 934: Fortran 90 subroutines to compute Mathieu functions for complex values of the parameter[J]. ACM Transactions on Mathematical Software, 40, 8.

    [35] Yeh C, Shimabukuro F I[M]. The essence of dielectric waveguides(2008).

    [36] Lee W M. Natural mode analysis of an acoustic cavity with multiple elliptical boundaries by using the collocation multipole method[J]. Journal of Sound and Vibration, 330, 4915-4929(2011).

    [37] Lee W M. Acoustic eigenproblems of elliptical cylindrical cavities with multiple elliptical cylinders by using the collocation multipole method[J]. International Journal of Mechanical Sciences, 78, 203-214(2014).

    [38] He X Q, Ning T G, Lu S H et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Optics Express, 26, 10109-10118(2018).

    [39] Hajati M, Hajati Y. Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate[J]. Plasmonics, 13, 403-412(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yida Du, Ning Li, Wenrui Xue, Huihui Li, Yue Zhang, Changyong Li. Multipole Method Analysis of Waveguides Based on Graphene-Coated Double Elliptical and Cylindrical Parallel Nanowires[J]. Acta Optica Sinica, 2023, 43(22): 2213002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Jul. 3, 2023

    Accepted: Sep. 6, 2023

    Published Online: Nov. 20, 2023

    The Author Email: Xue Wenrui (wrxue@sxu.edu.cn)

    DOI:10.3788/AOS231207

    Topics