Laser Technology, Volume. 43, Issue 4, 442(2019)
Preparation and characteristics of large aperture liquid crystal q-wave-plates
[1] [1] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.
[2] [2] FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2010, 2(4): 299-313.
[3] [3] SINGER W, RUBINSZTEINDUNLOP H, GIBSON U. Manipulation and growth of birefringent protein crystals in optical tweezers[J]. Optics Express, 2004, 12(26): 6440-6445.
[4] [4] KIM B N, HIRAGA K, MORITA K, et al. Microstructure and optical properties of transparent alumina[J]. Acta Materialia, 2009, 57(5): 1319-1326.
[5] [5] SWARTZLANDER G A, GAHAGAN K T. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America, 1999, B16(4): 533-537.
[6] [6] TAO S H, YUAN X C, LIN J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 2006, 100(4): 043105.
[7] [7] JESACHER A, FRüHAPTER S, BERNET S, et al. Size selective trapping with optical “cogwheel” tweezers[J]. Optics Express, 2004, 12(17): 4129-4135.
[8] [8] JACK B, YAO A M, LEACH J, et al. Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces[J]. Physical Review, 2010, A81(4): 043644.
[9] [9] DING D S, ZHANG W, ZHOU Z Y, et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble[J]. Science Foundation in China, 2015, 114(3): 050502.
[10] [10] WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519.
[11] [11] LOU K, QIAN S X, WANG X L, et al. Two-dimensional microstructures induced by femtosecond vector light fields on silicon[J]. Optics Express, 2012, 20(1): 120-127.
[12] [12] LOU K, QIAN S X, REN Z C, et al. Femtosecond laser processing by using patterned vector optical fields[J]. Scientific Reports, 2013, 3(2): 2281.
[13] [13] ANGER P, BHARADWAJ P, NOVOTNY L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11): 113002.
[14] [14] LEE K G, KIHM H W, KIHM J E, et al. Vector field microscopic imaging of light[J]. Nature Photonics, 2006, 1(1): 53-56.
[15] [15] NOVOTNY L, BEVERSLUIS M R, YOUNGWORTH K S, et al. Longitudinal field modes probed by single molecules[J]. Physical Review Letters, 2001, 86(23): 5251-5254.
[16] [16] WRBEL P, PNIEWSKI J, ANTOSIEWICZ T J, et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole[J]. Physical Review Letters, 2009, 102(18): 183902.
[17] [17] CHEN W, ABEYSINGHE D C, NELSON R L, et al. Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination[J]. Nano Letters, 2009, 9(12): 4320-4325.
[18] [18] SCHADT M, STALDER M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 1996, 21(23): 1948-1950.
[19] [19] ZHAN Q, LEGER J. Focus shaping using cylindrical vector beams[J]. Optics Express, 2002, 10(7): 324-331.
[20] [20] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209.
[21] [21] ELLENBOGEN T, VOLOCHBLOCH N, GANANYPADOWICZ A, et al. Nonlinear generation and manipulation of Airy beams[J]. Nature Photonics, 2009, 3(7): 395-398.
[22] [22] HONG X H, YANG B, ZHANG C, et al. Nonlinear volume holography for wave-front engineering[J]. Physical Review Letters, 2014, 113(16): 163902.
[23] [23] LI L, LI T, WANG S M, et al. Plasmonic airy beam generated by in-plane diffraction[J]. Physical Review Letters, 2011, 107(12): 126804.
[24] [24] MINOVICH A, KLEIN A E, JANUNTS N, et al. Generation and near-field imaging of Airy surface plasmons [J]. Physical Review Letters, 2011, 107(11): 116802.
[25] [25] ZHANG P, WANG S, LIU Y, et al. Plasmonic Airy beams with dynamically controlled trajectories[J]. Optics Letters, 2011, 36(16): 3191-3193.
[26] [26] VOLOCH-BLOCH N, LEREAH Y, LILACH Y, et al. Generation of electron Airy beams[J]. Nature, 2013, 494(7437): 331-335.
[27] [27] BRASSELET E, MURAZAWA N, MISAWA H, et al. Optical vortices from liquid crystal droplets[J]. Physical Review Letters, 2009, 103(10): 103903.
[28] [28] LOUSSERT C, DELABRE U, BRASSELET E. Manipulating the orbital angular momentum of light at the micron scale with nematic disclinations in a liquid crystal film [J]. Physical Review Letters, 2013, 111(3): 037802.
[29] [29] BRASSELET E, LOUSSERT C. Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons [J]. Optics Letters, 2011, 36(5): 719-721.
[30] [30] BARBOZA R, BORTOLOZZO U, ASSANTO G, et al. Harnessing optical vortex lattices in nematic liquid crystals [J]. Physical Review Letters, 2013, 111(9): 093902.
[31] [31] SLUSSARENKO S, MURAUSKI A, DU T, et al. Tunable liquid crystal q-plates with arbitrary topological charge[J]. Optics Express, 2011, 19(5): 4085-4090.
[32] [32] JI W. Liquid crystal and their optical-field control applications[D].Nanjing: Nanjing University, 2016: 42-50(in Chinese).
[33] [33] JI Z, ZHANG X, SHI B, et al. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings[J]. Optics Letters, 2016, 41(2): 336-339.
[34] [34] ZHANG X Z, XU J J, LI W, et al. Based on laser direct writing method of the liquid crystal region micro-and orientation system: China, 201410108057.3[P]. 2014-03-19(in Chinese).
[35] [35] JI Zh Ch, ZHANG X Zh, ZHANG Y J, et al. Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures[J]. Chinese Optics Letters, 2017, 15(7): 070501.
[36] [36] MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.
[37] [37] MARRUCCI L. Generation of helical modes momentum conversion in inhomogeneous liquid crystals[J]. Molecular Crystals and Liqud Crystals, 2008, 488(1): 148-162.
[38] [38] JIANG J J, ZHANG D Y, LI J F. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011, 35(5): 652-655(in Chinese).
[39] [39] MARRUCCI L. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals[J]. Proceedings of the SPIE, 2008, 488(1): 148-162.
[40] [40] KARIMI E, PICCIRILLO B, MARRUCCI L, et al. Light propagation in a birefringent plate with topological charge[J]. Optics Letters, 2009, 34(8): 1225-1227.
[41] [41] KARIMI E, PICCIRILLO B, NAGALI E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates[J]. Applied Physics Letters, 2009, 94(23): 231124.
[42] [42] WANG W, LI G H, HAO D Zh, et al. Experimental study of electric-termo-optic effect of nematic liquid crystal[J]. Laser Technology, 2004, 28(3): 275-277(in Chinese).
[43] [43] ZOU Y Ch, SI L, TAO R M, et al. Research progress of liquid crystal based light beam steering technique[J]. Laser Technology, 2011, 35(3): 293-298(in Chinese).
Get Citation
Copy Citation Text
ZHANG Yujiao, GAO Shaohua, SONG Xiao, YU Xuanyi, WANG Jiayi, ZHANG Xinzheng. Preparation and characteristics of large aperture liquid crystal q-wave-plates[J]. Laser Technology, 2019, 43(4): 442
Category:
Received: Oct. 19, 2018
Accepted: --
Published Online: Jul. 10, 2019
The Author Email: ZHANG Xinzheng (zxz@nankai.edu.cn)