Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1415003(2025)

3D Object Detection Algorithm Based on Graph Neural Network and Dynamic Sampling

Kai Zhong, Ying Chen*, Chengzhi Yan, and Han Gao
Author Affiliations
  • School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • show less
    Figures & Tables(17)
    Graph-based feature enhancement module
    Graph-based feature enhancement module
    Self attention with dimension reduction
    Dynamic sampling strategy. (a) Key point sampling process; (b) patch search
    Multi-scale graph pooling module
    Adaptive module
    Comparison of loss curves during algorithm training
    Visualization results
    • Table 1. Experimental environment

      View table

      Table 1. Experimental environment

      Experimental environmentConfiguration
      Operating systemUbuntu 22.04
      CPUIntel Core i5-13490F
      GPUGeForce RTX 4060ti (16 GB)
      Deep learning frameworkPyTorch 1.11.0
      Programming environmentPython 3.8.0
    • Table 2. Comparison of AP3D and inference speed of different algorithms on KITTI validation set

      View table

      Table 2. Comparison of AP3D and inference speed of different algorithms on KITTI validation set

      AlgorithmCar AP3DPedestrian AP3DCyclist AP3DInference speed /(frame/s)
      EasyModerateHardEasyModerateHardEasyModerateHard
      SECOND1288.5279.0976.2149.7544.4639.8581.2865.1360.6438.46
      PointPillars1388.5977.0173.9548.8143.2839.2882.1262.4058.3240.98
      IASSD1089.9780.0878.9758.2553.9648.9691.5571.7967.3046.76
      3DSSD988.8478.5876.6254.4148.3843.3489.0868.1865.5828.09
      CoIn2887.6978.4976.8153.8750.6746.8585.1267.4663.3535.97
      Point-GNN1788.6577.5773.8652.0644.5641.1679.6564.5858.7311.90
      PV-RCNN2991.4682.5880.1759.6651.5745.6587.9270.5966.4115.53
      PointRCNN889.7580.5678.0660.7253.3847.8789.7870.4366.8917.54
      Voxel R-CNN1590.2881.9180.3061.5354.1549.0189.6771.5067.5420.16
      DSVT-Voxel3092.1681.2580.0260.2354.3649.8189.4672.6967.8317.42
      Proposed92.9883.1481.4661.6155.5851.0591.0573.1568.7626.39
    • Table 3. Comparison of VRAM usage experiments

      View table

      Table 3. Comparison of VRAM usage experiments

      AlgorithmVRAM usage /MBGPU utilization /%Time /smAP3D /%
      PointPillars69398922363.75
      Proposed135609646373.20
    • Table 4. Results of algorithm ablation experiments

      View table

      Table 4. Results of algorithm ablation experiments

      AlgorithmGFEDPSMGPmAP3D /%mAPBEV /%
      CarPedestrianCyclistCarPedestrianCyclist
      Baseline×××79.8543.7967.6189.5949.9370.67
      ××81.8347.3768.6190.6153.3071.99
      ×85.2655.8076.1691.1359.9177.23
      ×85.1054.4273.7291.8160.1378.17
      85.8656.0877.6591.8360.2978.82
    • Table 5. Ablation experiment results of each component of GFE

      View table

      Table 5. Ablation experiment results of each component of GFE

      VFESADRFDFSmAP3D /%
      CarPedestrianCyclist
      ×××79.8642.3366.05
      ××80.2344.5666.92
      ×80.6945.2667.56
      81.8546.0668.26
    • Table 6. Impact of hyperparameter K value in GFE

      View table

      Table 6. Impact of hyperparameter K value in GFE

      AlgorithmKCar AP3D /%
      EasyModerateHard
      Proposed992.8783.1281.42
      1691.3482.6980.57
      3289.3582.7980.69
    • Table 7. Comparison of performance and time consumption between DPS and traditional sampling methods

      View table

      Table 7. Comparison of performance and time consumption between DPS and traditional sampling methods

      MethodCar AP3D /%Time consumption /ms
      Overall0‒20 m20‒40 m40 m‒inf
      FPS82.3393.3482.4635.63183
      DPS82.9694.5684.5338.26172
    • Table 8. Impact of parameter t on detection performance and inference speed

      View table

      Table 8. Impact of parameter t on detection performance and inference speed

      tPedestrian mAP3D /%Cyclist mAP3D /%Inference speed /(frame/s)
      1.053.1474.2327.08
      1.254.3675.5426.69
      1.456.0877.6526.39
      1.655.5176.8225.89
      1.854.0675.0725.74
    • Table 9. Adaptive module ablation experiment

      View table

      Table 9. Adaptive module ablation experiment

      Adaptive moduleCar AP3D /%Car APBEV /%
      ×85.1691.23
      85.8291.86
    Tools

    Get Citation

    Copy Citation Text

    Kai Zhong, Ying Chen, Chengzhi Yan, Han Gao. 3D Object Detection Algorithm Based on Graph Neural Network and Dynamic Sampling[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1415003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 27, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jul. 16, 2025

    The Author Email: Ying Chen (chy@sit.edu.cn)

    DOI:10.3788/LOP242327

    CSTR:32186.14.LOP242327

    Topics