Acta Optica Sinica, Volume. 45, Issue 17, 1720011(2025)

Research Progress and Prospects of High-Speed Ge/Si Photodetector Technology (Invited)

Guanyu Chen1,2,3、*, Jian Wang1,2, Jianing Zhang1,2, and Tao Zhu1,2、**
Author Affiliations
  • 1Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
  • 3Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China
  • show less
    Figures & Tables(11)
    Normally incident Ge/Si PD. (a)(b) Cross-sectional view of normally incident Ge/Si PD and its 3 dB bandwidth[23]; (c)(d) schematic diagram of Ge/Si PD with integrated optical resonator structure and its bandwidth[25]
    High-speed VPIN Ge/Si PD[13].(a) Schematic diagram; (b) cross-sectional diagram; (c) cross-sectional scanning electron microscopy (SEM) image of Ge/Si PD; (d) bandwidth test results
    High-speed LPIN Ge/Si PD[29]. (a) Schematic diagram; (b) top view optical microscope image, (c) cross-sectional scanning electron microscope image (perpendicular to waveguide direction); (d) bandwidth measurement result
    Equivalent model of germanium-silicon detectors and ideal bandwidth. (a) Schematic diagram structure of simplified equivalent RC circuit of Ge PIN PD; (b) relationship between transmission time limit, RC limit and total 3 dB bandwidth of Ge PIN PD and width of essential region
    Simplified equivalent circuit of a gain peaking Ge/Si PD with on/off chip inductor
    High-speed Ge/Si PD with LPIN structure. (a) Cross-sectional schematic of LPIN Ge/Si PD[27]; (b) transmission electron microscopy (TEM) images[27]; (c) 3 dB bandwidths measured under various bias voltages (A, B, and C correspond to intrinsic regions with widths of 0.5, 0.7, and 1.0 μm, respectively)[27]; (d) scanning transmission electron microscopy (STEM) images[12]; (e) energy-dispersive X-ray spectroscopy (EDX) mappings[12]; (f) bandwidth measurement results[12]
    Gain peaking VPIN Ge/Si PD. (a)(b) Microscope image of gain peaking Ge/Si PD with on-chip double layer spiral inductor, and its measured S21 curves[46]; (c)(d) schematic image of gain peaking Ge/Si PD with off-chip inductor and its measured bandwidth[36]; (e)(f) microscope image of gain peaking Ge/Si PD with optimized inductor design and its measured bandwidth[39]
    Relationship between dark current density and bandwidth of Ge/Si PD (the numbers correspond to the reference numbers)
    Relationship between responsivity and bandwidth of Ge/Si PD (the numbers correspond to the reference numbers)
    Applications of high-speed Ge/Si PD. (a) 3D integrated optoelectronic transceiver[78]; (b)(c) experimental feedback, control loop, and system schematic diagram[79]; (d) schematic diagram of amplifier-free wireless communication system[80]
    • Table 1. Performance comparison of high-speed Ge/Si PD

      View table

      Table 1. Performance comparison of high-speed Ge/Si PD

      YearStructureWavelength /nmDark currentDark current density /(mA/cm²)Responsivity /(A/W)Bandwidth /GHzRef.
      2007VPIN1550169 nA (-2 V)51 (-2 V)0.89 (-2 V)31.3 (-2 V)[13]
      2007VPIN15501 μA (-0.5 V)410 (-0.5 V)1.08 (-1 V)7.2 (-1 V)[41]
      2008LPIN155060 nA (-1 V)125 (-1 V)0.65 (-1 V)18 (-1 V)[42]
      2009VPIN155035 nA (-1 V)17.5 (-1 V)0.8 (-1 V)47 (-3 V)[43]
      2009VPIN155018 nA(-1 V)60 (-1 V)1 (-4 V)42 (-4 V)[14]
      2010

      VPIN

      LPIN

      1550

      0.57 μA (-1 V,VPIN)

      3.8 μA (-1 V,LPIN)

      70 (-1 V,VPIN)

      190 (-1 V,VPIN)

      0.92 (-1 V)

      11.3 (-1 V,VPIN)

      10.1 (-1 V,LPIN)

      [44]
      2011VPIN15502.6 nA (-1 V)32 (-0.5 V)0.95 (-1 V)36 (-1 V)[45]
      2012LPIN15504 μA (-1 V)8×10⁴ (-1 V)0.78 (0 V)120 (-2 V)[29]
      2013VPIN-3 μA (-2 V)3.75×10³ (-1 V)0.75 (-2 V)60 (-2 V)[35]
      2013LPIN155074, 62, 61 nA(-1 V)51.4, 27.1, 26.3 (-1 V)0.78 (0 V)>90, 62, 45 (-3 V)[27]
      2015LPIN1550100 nA (-1 V)1000 (-1 V)1 (-1 V)70 (-1 V)[46]
      2016VPIN15503.5 μA (-2 V)2.1×10³ (-1 V)1.09 (-2 V)42.5 (-2 V)[47]
      2017LPIN15504 nA (-1 V)571 (-1 V)

      0.74 (-1 V)

      0.92 (-1 V)

      67 (-1 V)[28]
      2019LPIN15507 nA (-1 V)~140 (-1 V)1.19 (-1 V)32 (-4 V)[48]
      2020VPIN15501 nA (-1 V)~2 (-1 V)0.883 (0 V)25 (-4 V)[49]
      2021VPIN15506.4 nA (-3 V)~12.8 (-3 V)0.89 (-3 V)80[39]
      2021LPIN1550<100 nA (-2 V)~2×10⁴0.45, 0.30240, 265[12]
      2022VPIN1520‒156016.4 nA (-1 V)58 (-1 V)>1.05 (-2 V)~67 (-2 V)[50]
      2023VPIN155035 nA (-1 V)-0.81>75[51]
      2024VPIN15501.3 nA (-1 V)2.6 (-1 V)0.95 (-1 V)103 (-1 V)[40]
      2025LPIN1550<20 nA (-3 V)<66.7 (-3 V)1.05 (-3 V)>100 (-3 V)[38]
    Tools

    Get Citation

    Copy Citation Text

    Guanyu Chen, Jian Wang, Jianing Zhang, Tao Zhu. Research Progress and Prospects of High-Speed Ge/Si Photodetector Technology (Invited)[J]. Acta Optica Sinica, 2025, 45(17): 1720011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Jun. 3, 2025

    Accepted: Jun. 26, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Guanyu Chen (gychen@cqu.edu.cn), Tao Zhu (zhutao@cqu.edu.cn)

    DOI:10.3788/AOS251196

    CSTR:32393.14.AOS251196

    Topics