Chinese Journal of Lasers, Volume. 50, Issue 16, 1602103(2023)

Forming and Mechanical Properties of Pulsed Laser‑TIG Hybrid Lap Welded Joints for QP980 Steel

Wenjie Ma, Gang Song*, Ziqian Sun, and Liming Liu
Author Affiliations
  • Key Laboratory of Advanced Connection Technology of Liaoning Province, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    References(26)

    [1] Wang L, Speer J G. Quenching and partitioning steel heat treatment[J]. Metallography, Microstructure, and Analysis, 2, 268-281(2013).

    [2] Guo W, Wan Z D, Peng P et al. Microstructure and mechanical properties of fiber laser welded QP980 steel[J]. Journal of Materials Processing Technology, 256, 229-238(2018).

    [3] Li W D, Ma L X, Peng P et al. Microstructural evolution and deformation behavior of fiber laser welded QP980 steel joint[J]. Materials Science and Engineering: A, 717, 124-133(2018).

    [4] Zuo D G, Yan Q, Wang L. Study on microstructure and properties of laser welding seam of ultra-high strength QP980 steel[J]. Metal Working (Metal Forming), 47-48(2015).

    [5] Xue J L, Guo W, Zhang Y X et al. Local microstructure and mechanical characteristics of HAZ and tensile behavior of laser welded QP980 joints[J]. Materials Science and Engineering: A, 854, 143862(2022).

    [6] Lin H T, Meng Q, Wang Y S et al. Effect of rotation speed on the microstructure and mechanical properties of friction stir welding of joint high strength steel Q & P980[J]. Materials Reports, 34, 6126-6131(2020).

    [7] Tang J Z, Zou D Q, Jiang H M et al. Experimental study on resistance spot welding technology and fatigue property of Q & P steel[J]. Hot Working Technology, 43, 39-42, 46(2014).

    [8] Fan C L, Wang H R, Ma D F. Experimental study of nanoelectroplating steel spot welding structure under impact tensile-shear loading[J]. Materials Express, 11, 1207-1213(2021).

    [9] Jing Y, Xu Y B, Wang D X et al. Improving mechanical properties of welds through tailoring microstructure characteristics and fracture mechanism in multi-pulse resistance spot welding of Q&P980 steel[J]. Materials Science and Engineering: A, 843, 143130(2022).

    [10] Ramachandran D C, Figueredo B, Sherepenko O et al. A study on improving the mechanical performance by controlling the halo ring in the Q&P980 steel resistance spot welds[J]. Journal of Manufacturing Processes, 75, 320-330(2022).

    [11] Zhang W, Tao W, Yang S L. Mechanical properties and fracture behaviors in remote laser spot welding of quenching and partitioning 980 steel[J]. Optics & Laser Technology, 140, 107053(2021).

    [12] Zhang W, Yang S L, Lin Z et al. Weld morphology and mechanical properties in laser spot welding of quenching and partitioning 980 steel[J]. Journal of Manufacturing Processes, 56, 1136-1145(2020).

    [15] Wang X R, Wu Y, Pan H et al. Microstructure and softening of advanced high-strength steel QP1180 lap joints welded with CMT[J]. Materials Letters, 287, 129282(2021).

    [16] Jiang X M. Study on welding process and numerical simulation of ultra high strength steel QP980 CMT[D](2021).

    [17] Shi J P, Zhou Y B, Liu L M. Application of pulsed laser-TIG hybrid heat source in root welding of thick plate titanium alloys[J]. Applied Sciences, 7, 527(2017).

    [18] Liu L M, Shi J P, Hou Z L et al. Effect of distance between the heat sources on the molten pool stability and burn-through during the pulse laser-GTA hybrid welding process[J]. Journal of Manufacturing Processes, 34, 697-705(2018).

    [19] Ma Y L, Chen H, Zhao X et al. Mechanical properties of laser hybrid welded joint of 1000 MPa ultrahigh-strength steel[J]. Chinese Journal of Lasers, 48, 0602113(2021).

    [20] Song G, Yu P N, Li T T et al. Simulation and analysis of magnesium alloy/steel by laser-induced arc hybrid welding[J]. Chinese Journal of Lasers, 47, 0602001(2020).

    [21] Ma Y Q, Wang H Y, Liu L M. Aluminum alloy and high-strength steel joint via laser-induced tungsten inert gas hybrid welding based on Ni interlayer[J]. Chinese Journal of Lasers, 46, 90-96(2019).

    [22] Soysal T, Kou S, Tat D et al. Macrosegregation in dissimilar-metal fusion welding[J]. Acta Materialia, 110, 149-160(2016).

    [23] Kim M B, Kim S J, Lee B K et al. Effect of the heat input on the tensile properties in arc brazing of ferritic stainless steel using Cu-Si insert alloy[J]. Korean Journal of Metals and Materials, 48, 289-296(2010).

    [24] Kang L, Huang R S, Liu L M et al. Low-power YAG laser-MAG arc hybrid welding of stainless steel[J]. Transactions of the China Welding Institution, 28, 69-72, 116(2007).

    [25] Yu Z S, Li R F, Zhou F M et al. Joint evolution and strengthening mechanisms in arc brazed galvanised steels with Cu97Si3 filler[J]. Materials Science and Technology, 20, 1479-1483(2004).

    [26] Chen M H. Study on mechanism of low-power pulsed laser induced and enhanced arc discharge based on magnesium alloy welding[D](2014).

    Tools

    Get Citation

    Copy Citation Text

    Wenjie Ma, Gang Song, Ziqian Sun, Liming Liu. Forming and Mechanical Properties of Pulsed Laser‑TIG Hybrid Lap Welded Joints for QP980 Steel[J]. Chinese Journal of Lasers, 2023, 50(16): 1602103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Feb. 2, 2023

    Accepted: Mar. 14, 2023

    Published Online: Aug. 9, 2023

    The Author Email: Song Gang (songgang@dlut.edu.cn)

    DOI:10.3788/CJL230481

    Topics