Laser & Optoelectronics Progress, Volume. 60, Issue 6, 0610002(2023)
Digital Generation Technology for Tomb Murals Based on Multiscale Cascade Network
[1] Yang Z R. The experiment of uncovering ancient frescoes with earth method was successful[J]. Cultural Relics, 15(1958).
[3] Wang J R. Digital acquisition technology and application of high-precision images of Tang tomb murals[J]. Relics and Museolgy, 66-70(2011).
[4] Karianakis N, Maragos P. An integrated system for digital restoration of prehistoric Theran wall paintings[C](2013).
[5] Jaidilert S, Farooque G. Crack detection and images inpainting method for Thai mural painting images[C], 143-148(2018).
[6] Criminisi A, Perez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 13, 1200-1212(2004).
[7] Purkait P, Ghorai M, Samanta S et al. A patch-based constrained inpainting for damaged mural images[M]. Mallik A, Chaudhury S, Chandru V, et al. Digital Hampi: preserving Indian cultural heritage, 205-223(2017).
[8] Chen Y, Tao M F, Ai Y P et al. Algorithm for Dunhuang mural inpainting based on Gabor transform and group sparse representation[J]. Laser & Optoelectronics Progress, 57, 221015(2020).
[9] Chen Y, Chen J, Ai Y P et al. Dunhuang mural inpainting algorithm based on sequential similarity detection and cuckoo optimization[J]. Laser & Optoelectronics Progress, 57, 201020(2020).
[10] Pathak D, Krähenbühl P, Donahue J et al. Context encoders: feature learning by inpainting[C], 2536-2544(2016).
[11] Iizuka S, Simo-Serra E, Ishikawa H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 36, 107(2017).
[12] Paunwala C N. Image inpainting evolution: a survey[M]. Encyclopedia of image processing, 319-333(2018).
[14] Peng G Z, Chen W J. Fringe pattern inpainting based on convolutional neural network denoising regularization[J]. Acta Optica Sinica, 40, 1810002(2020).
[17] Chen J Z, Wang J, Gong X. Face image inpainting using cascaded generative adversarial networks[J]. Journal of University of Electronic Science and Technology of China, 48, 910-917(2019).
[21] Zhu X C, Tang G J. Overview of visual quality assessment methods[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 38, 1-11(2018).
[22] Wen Y H, Yang K, Li B. Performance test for image quality assessment[J]. Chinese Space Science and Technology, 30, 72-77(2010).
[23] Li C Y, Wang H Q, Wu M et al. Automatic recognition and virtual restoration of mud spot disease of Tang dynasty tomb murals image[J]. Computer Engineering and Applications, 52, 233-236(2016).
[24] Shen J N, Wang H Q, Wu M et al. Tang dynasty tomb murals inpainting algorithm of MCA decomposition[J]. Journal of Frontiers of Computer Science and Technology, 11, 1826-1836(2017).
[25] Ma D A, Tang P, Zhao L J et al. Review of data augmentation for image in deep learning[J]. Journal of Image and Graphics, 26, 487-502(2021).
[26] Park D Y, Lee K H. Arbitrary style transfer with style-attentional networks[C], 5880-5888(2019).
Get Citation
Copy Citation Text
Meng Wu, Yi Ren, Jia Wang. Digital Generation Technology for Tomb Murals Based on Multiscale Cascade Network[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0610002
Category: Image Processing
Received: Nov. 23, 2021
Accepted: Jan. 11, 2022
Published Online: Mar. 7, 2023
The Author Email: Meng Wu (wumeng@xauat.edu.cn)