Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 3, 285(2022)
Thiol content effect on properties of blue phase liquid crystal elastomers
[1] [1] SAED M O, TORBATI A H, NAIR D P, et al. Synthesis of programmable main-chain liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. Journal of Visualized Experiments, 2016(107): e53546.
[2] [2] ULA S W, TRAUGUTT N A, VOLPE R H, et al. Liquid crystal elastomers: an introduction and review of emerging technologies [J]. Liquid Crystals Reviews, 2018, 6(1): 78-107.
[3] [3] ZHANG W X, LUB J, SCHENNING A P H J, et al. Polymer stabilized cholesteric liquid crystal siloxane for temperature-responsive photonic coatings [J]. International Journal of Molecular Sciences, 2020, 21(5): 1803.
[4] [4] BRANNUM M T, STEELE A M, VENETOS M C, et al. Light control with liquid crystalline elastomers [J]. Advanced Optical Materials, 2019, 7(6): 1801683.
[5] [5] YANG C J, WU B H, RUAN J, et al. 3D-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets [J]. Advanced Materials, 2021, 33(10): 2006361.
[7] [7] BISOYI H K, LI Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications [J]. Chemical Reviews, 2016, 116(24): 15089-15166.
[10] [10] YANG C J, WU B H, RUAN J, et al. Mechanochromic responses of cholesteric liquid crystal droplets with nanoscale periodic helical structures showing reversible and tunable structural color [J]. ACS Applied Polymer Materials, 2022, 4(1): 463-468.
[11] [11] CICUTA P, TAJBAKHSH A R, TERENTJEV E M. Photonic gaps in cholesteric elastomers under deformation [J]. Physical Review E, 2004, 70(1): 011703.
[12] [12] HIROTA Y, JI Y, SERRA F, et al. Effect of crosslinking on the photonic bandgap in deformable cholesteric elastomers [J]. Optics Express, 2008, 16(8): 5320-5331.
[13] [13] SERRA F, MATRANGA M A, JI Y, et al. Single-mode laser tuning from cholesteric elastomers using a “notch” band-gap configuration [J]. Optics Express, 2010, 18(2): 575-581.
[14] [14] VARANYTSIA A, NAGAI H, URAYAMA K, et al. Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain [J]. Scientific Reports, 2015, 5(1): 17739.
[15] [15] GARCIA-AMORS J, VELASCO D. Structural features guiding the design of liquid-crystalline elastomeric fluorescent force sensors [J]. Applied System Innovation, 2020, 3(2): 22.
[16] [16] OHM C, BREHMER M, ZENTEL R. Liquid crystalline elastomers as actuators and sensors [J]. Advanced Materials, 2010, 22(31): 3366-3387.
[17] [17] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.
[18] [18] WANG C J, SIM K, CHEN J, et al. Soft ultrathin electronics innervated adaptive fully soft robots [J]. Advanced Materials, 2018, 30(13): 1706695.
[19] [19] HE Q G, WANG Z J, WANG Y, et al. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation [J]. Science Advances, 2019, 5(10): eaax5746.
[20] [20] SCHMIDTKE J, KNIESEL S, FINKELMANN H. Probing the photonic properties of a cholesteric elastomer under biaxial stress [J]. Macromolecules, 2005, 38(4): 1357-1363.
[21] [21] WANG Z J, TIAN H M, HE Q G, et al. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide Bonds [J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33119-33128.
[22] [22] ROUSSEAU I A, MATHER P T. Shape memory effect exhibited by smectic-C liquid crystalline elastomers [J]. Journal of the American Chemical Society, 2003, 125(50): 15300-15301.
[23] [23] HU W, WANG L, WANG M, et al. Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly [J]. Nature Communications, 2021, 12(1): 1440.
[24] [24] LIU J, LIU W Z, GUAN B, et al. Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases [J]. Nature Communications, 2021, 12(1): 3477.
[25] [25] YANG J J, ZHAO W D, HE W L, et al. Liquid crystalline blue phase materials with three-dimensional nanostructures [J]. Journal of Materials Chemistry C, 2019, 7(43): 13352-13366.
[28] [28] LEE M J, CHANG C H, WEI L. Label-free protein sensing by employing blue phase liquid crystal [J]. Biomedical Optics Express, 2017, 8(3): 1712-1720.
[29] [29] CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nature Materials, 2014, 13(8): 817-821.
[30] [30] ZHANG Y S, JIANG S A, LIN J D, et al. Stretchable freestanding films of 3D nanocrystalline blue phase elastomer and their tunable applications [J]. Advanced Optical Materials, 2021, 9(1): 2001472.
[31] [31] SCHLAFMANN K R, WHITE T J. Retention and deformation of the blue phases in liquid crystalline elastomers [J]. Nature Communications, 2021, 12(1): 4916.
Get Citation
Copy Citation Text
ZHENG Lin, XU Xue-jing, DU Kai-yang, GAO Han, WANG Zi-yue, ZHOU Xuan, ZHU Ji-liang. Thiol content effect on properties of blue phase liquid crystal elastomers[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 285
Category:
Received: Jan. 6, 2022
Accepted: --
Published Online: Jul. 21, 2022
The Author Email: