Remote Sensing Technology and Application, Volume. 39, Issue 1, 87(2024)

Study on Classification of Arbor Tree Species at Single Tree Scale based on Cross-modal Hybrid Fusion of UAV Point Cloud and Image

Min YAN1、*, Yonghua XIA1,2, Chong WANG3, Xiali KONG1, Haoyu TAI1, and Chen LI1
Author Affiliations
  • 1Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China
  • 2City College,Kunming University of Science and Technology,Kunming 650051,China
  • 3Kunming Survey and Design Institute Co. ,Ltd. ,China Power Construction Group,Kunming 650200,China
  • show less
    Figures & Tables(20)
    General location map of the study area
    Sample distribution map
    Low-rank multimodal feature fusion
    The overall flow of the multimodal hybrid fusion algorithm
    Correlation coefficients diagram of index parameters
    Correlation coefficient diagram of point cloud parameters
    Correlation coefficient diagram of combined features
    PI index diagram of important characteristics 1-31
    PI index diagram of important characteristics 32-62
    Heat map of different fusion parameters
    Tree species classification result map
    • Table 1. [in Chinese]

      View table
      View in Article

      Table 1. [in Chinese]

      名称参数

      华测-AA450

      机载扫描仪

      扫描频率:24万点/秒(单回波)、72万点/秒(三回波)

      视场角:70.4°(水平)*4.5°(垂直)

      最大测程:450 m

      禅思P1相机

      焦距:24 mm

      画幅尺寸:35.9×24 mm

      有效像素:4 500万

    • Table 2. Sample size information

      View table
      View in Article

      Table 2. Sample size information

      类别墨西哥柏杜仲油橄榄云南松其他杂木总和
      数量203114137140121715
    • Table 3. Visible light index variable and its description

      View table
      View in Article

      Table 3. Visible light index variable and its description

      指数特征变量变量描述参考文献指数特征变量变量描述参考文献
      红(R)R=R最大值Vmax=MAX(X)
      绿(G)G=G最小值Vmin=MIN(X)
      蓝(B)B=B平均数Vmean=(i=1nxi)/n
      绿叶指数(GLI)GLI=((G-R)+(G-B))(2*G+R+B)[20]方差Vvariance=i=1nxi-Mean2n
      绿红植被指数(GRVI)GRVI=R-GR+G[20]偏斜度Vskewness=i=1nxi-Mean3n3
      红绿蓝植被指数(RGBVI)RGBVI=G*G-R*BG*G+R*B[20]冠幅面积(S)S=i=1npi
      可见大气阻力指数(VARI)VARI=G-RG+R-B[20]归一化绿红差异指数(NGRDI)NGRDI=G-RG+R[20]
    • Table 4. Point cloud parameter characteristic variable and its description

      View table
      View in Article

      Table 4. Point cloud parameter characteristic variable and its description

      二次幂平均(1个)QPM=i=1nZi2/n强度变量(42个)强度百分位数四分位数间距(1个)Int_IQ=Int75%-Int25%
      三次幂平均(1个)TPM=i=1nZi3/n3

      郁闭度

      (1个)

      郁闭度(CC,1个)

      CC=nveg/ntotal

      ( nveg为植被点数,ntotal为总点数)

      高度百分位数(15个)

      Elev=ZX%(X=1,5,10,20,

      25,30,40,50,60,70,75,80,90,95,99)

      叶面积

      指数

      (1个)

      叶面积指数

      (LAI, 1个)

      LAI=(cos(ang)×ln(GF))/k(ang为平均扫描角,GF为间隙率,k为消光系数)
      高度百分位数四分位数间距(1个)Elev_IQ=Elev75%-Elev25%

      间隙率

      (1个)

      间隙率(GF, 1个)

      GF=nground/n( nground为提取Z值

      低于高度阈值的地面点数,n为总点数)

    • Table 5. Parameter Settings of each algorithm

      View table
      View in Article

      Table 5. Parameter Settings of each algorithm

      SVMRFXGBoostLightGBM

      c=15, 55(LMF)

      g=0.01

      max_depth =5

      n_estimators=500

      max_depth=5

      learning_rate=0.1

      n_estimators=500

      max_depth=5

      learning_rate=0.1

      n_estimators=500

      num_leaves=60

      BaggingAdaBoostBlendingStacking

      base_estimator=LightGBM

      n_estimators=500

      max_samples=10

      max_feature=10

      base_estimator=LightGBM

      n_estimators=500

      learning_rate=0.1

      base_estimator:

      XGBoost、LightGBM、RF

      meta_estimator:

      Naive Bayes

      base_estimator:

      XGBoost、LightGBM、RF

      meta _estimator:

      Naive Bayes

    • Table 6. Performance comparison of each classification algorithm

      View table
      View in Article

      Table 6. Performance comparison of each classification algorithm

      名称数据类型测试精度/%Kappa用时/S
      SVMPoint Cloud78.040.722 20.012
      RFPoint Cloud68.860.604 30.016
      SVMImage80.440.751 70.011
      RFImage75.050.683 00.013
      SVMConcatenate86.630.830 50.014
      RFConcatenate76.850.707 00.039
      SVMLMF91.150.888 10.005
      RFLMF89.020.861 40.103
      XGBoostLMF94.140.925 40.509
      LightGBMLMF95.440.942 00.212
      Proposed MethodProposed99.400.992 41.23
    • Table 7. Performance comparison of different ensemble methods

      View table
      View in Article

      Table 7. Performance comparison of different ensemble methods

      名称数据类型测试精度/%Kappa用时/S
      BaggingConcatenate96.010.949 415.510
      AdaBoostConcatenate97.210.964 52.215
      BlendingProposed94.420.928 71.772
      StackingProposed99.400.992 41.23
    • Table 8. Comparison of tree species classification performance of CNN algorithm

      View table
      View in Article

      Table 8. Comparison of tree species classification performance of CNN algorithm

      名称

      模型

      深度

      验证精度

      /%

      测试精度

      /%

      测试集

      Kappa

      训练用时
      Alex Net888.9688.130.848 652 s
      Google Net2287.6686.300.826 51 min 19 s
      VGG-16 Net1682.4781.740.769 510 min 2 s
      Res Net-181891.5690.410.878 41 min 14 s
      Dense Net20194.8192.240.901 323 min 24 s
      Shuffle Net5087.6684.020.799 42 min 27 s
    • Table 9. Statistical results of tree in study area

      View table
      View in Article

      Table 9. Statistical results of tree in study area

      柏树杜仲油橄榄松树杂木总数
      3881395243431 0962 490
    Tools

    Get Citation

    Copy Citation Text

    Min YAN, Yonghua XIA, Chong WANG, Xiali KONG, Haoyu TAI, Chen LI. Study on Classification of Arbor Tree Species at Single Tree Scale based on Cross-modal Hybrid Fusion of UAV Point Cloud and Image[J]. Remote Sensing Technology and Application, 2024, 39(1): 87

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 20, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: YAN Min (1626020236@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.1.0087

    Topics