Journal of the Chinese Ceramic Society, Volume. 49, Issue 12, 2691(2021)
Advances inMolecular Dynamics Simulation of Glass Structures and Properties Calculation
[2] [2] CORNING INCORPORATED. Gorilla Glass Victus[EB/OL]. [0-03-26]. https://www.corning.com/microsites/csm/gorillaglass/PI_ Sheets/2020/Corning%20Gorilla%20Glass%20Victus_PI%20Sheet.pdf.
[3] [3] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J]. Chem Mater, 2016, 28(12): 4267-4277.
[4] [4] WOODCOCK L V, ANGELL C A, CHEESEMAN P. Molecular dynamics studies of the vitreous state: Simple ionic systems and silica[J]. J Chem Phys, 1976, 65(4): 1565-1577.
[5] [5] PEDONE A. Properties Calculations of silica-based glasses by atomistic simulations techniques: A review[J]. J Phys Chem C, 2009, 113(49): 20773-20784.
[6] [6] DU J. Molecular Dynamics Simulations of Oxide Glasses [M]//MUSGRAVES J D, HU J and CALVEZ L. Springer Handbook of Glass. Cham: Springer International Publishing. 2019: 1131-1155.
[7] [7] DU J. Challenges in Molecular dynamics simulations of multicomponent oxide glasses [M]//MASSOBRIO C, DU J, BERNASCONI M, SALMON P S. Molecular dynamics simulations of disordered materials: From network glasses to phase-change memory alloys. Cham: Springer International Publishing. 2015: 157-180.
[8] [8] NAGAOKA M, SUZUKI Y, OKAMOTO T, et al. A hybrid MC/MD reaction method with rare event-driving mechanism: Atomistic realization of 2-chlorobutane racemization process in DMF solution[J]. Chem Phys Lett, 2013, 583: 80-86.
[9] [9] SCHILLING T, DOROSZ S, SCHOPE H J, et al. Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study[J]. J Phys Condens Matter, 2011, 23(19): 194120.
[10] [10] XIANG Y, DU J, SMEDSKJAER M M, et al. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2013, 139(4): 044507.
[11] [11] WAGNER J, HAIGIS V, LEYDIER M, et al. The structure of Y- and La-bearing aluminosilicate glasses and melts: A combined molecular dynamics and diffraction study[J]. Chem Geol, 2017, 461: 23-33.
[12] [12] LEE K H, YANG Y, ZIEBARTH B, et al. Evaluation of classical interatomic potentials for molecular dynamics simulations of borosilicate glasses[J]. J Non-Cryst Solids, 2020, 528: 119736.
[13] [13] CORNO M, PEDONE A. Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations[J]. Chem Phys Lett, 2009, 476(4-6): 218-222.
[14] [14] MOUNTJOY G, AL-HASNI B M, STOREY C. Structural organisation in oxide glasses from molecular dynamics modelling[J]. J Non-Cryst Solids, 2011, 357(14): 2522-2529.
[15] [15] PEDONE A, CHEN X, HILL R G, et al. Molecular dynamics investigation of halide-containing phospho-silicate bioactive glasses[J]. J Phys Chem B, 2018, 122(11): 2940-2948.
[16] [16] BEEMAN D. Some multistep methods for use in molecular dynamics calculations[J]. J Comput Phys, 1976, 20(2): 130-139.
[17] [17] GEAR C W. Numerical initial value problems in ordinary differential equations[M]. New York: Prentice-Hall Series in Automatic Computation, 1971.
[18] [18] JONES J E. On the determination of molecular fields-II from the equation of state of a gas[J]. Proc R Soc London Ser A, 1924, 106(738): 463-477.
[19] [19] BUCKINGHAM R A. The classical equation of state of gaseous helium, neon and argon[J]. Proc R Soc London Ser A, 1938, 168(933): 264-283.
[20] [20] BUSING W R. Interpretation of the crystal structure of Li2BeF4 in terms of the Born‐Mayer‐Huggins model[J]. J Chem Phys, 1972, 57(7): 3008-3010.
[21] [21] PEDONE A, MALAVASI G, MENZIANI M C, et al. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses[J]. J Phys Chem B, 2006, 110(24): 11780-11795.
[22] [22] JOHNSON R, WILSON W. Defect calculations for FCC and BCC metals [M]. PIERRE C G, JOE R B, JAFFEE R I. Interatomic Potentials and Simulation of Lattice Defects. US: Springer, 1972: 301-319.
[23] [23] TERSOFF J. MODELING SOLID-STATE CHEMISTRY- INTERATOMIC POTENTIALS FOR MULTICOMPONENT SYSTEMS[J]. Phys Rev B, 1989, 39(8): 5566-5568.
[24] [24] BASKES M I. Modified embedded-atom potentials for cubic materials and impurities[J]. Phys Rev B, 1992, 46(5): 2727-2742.
[27] [27] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys, 1980, 72(4): 2384-2393.
[28] [28] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters[J]. J Chem Phys, 1982, 76(1): 637-649.
[29] [29] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J Phys Chem, 1987, 91(19): 4950-4963.
[31] [31] ZHAO J, MA R, CHEN X, et al. From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics[J]. J Phys Chem C, 2016, 120(31): 17726-17732.
[32] [32] DENG L, DU J. Development of boron oxide potentials for computer simulations of multicomponent oxide glasses[J]. J Am Ceram Soc, 2019, 102(5): 2482-2505.
[33] [33] DU J, CORMACK A N. The medium range structure of sodium silicate glasses: a molecular dynamics simulation[J]. J Non-Cryst Solids, 2004, 349: 66-79.
[34] [34] YUAN X, CORMACK A N. Efficient algorithm for primitive ring statistics in topological networks[J]. Comput Mater Sci, 2002, 24(3): 343-360.
[35] [35] ZHAO Y, DU J, QIAO X, et al. Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations[J]. J Non-Cryst Solids, 2020, 527: 119734.
[36] [36] KARPUKHINA N, HILL R G, LAW R V. Crystallisation in oxide glasses-a tutorial review[J]. Chem Soc Rev, 2014, 43(7): 2174-2186.
[37] [37] PHILLIPS J. Topology of covalent non-crystalline solids III: kinetic model of the glass transition[J]. J Non-Cryst Solids, 1981, 44(1): 17-30.
[38] [38] VOLLMAYR K, KOB W, BINDER K. Cooling-rate effects in amorphous silica: A computer-simulation study[J]. Phys Rev B, 1996, 54(22): 15808-15827.
[39] [39] DENG L, DU J. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2018, 148(2): 024504.
[40] [40] LUSVARDI G, MALAVASI G, TARSITANO F, et al. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses[J]. J Phys Chem B, 2009, 113(30): 10331-10338.
[41] [41] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. I. Silicate systems[J]. J Non-Cryst Solids, 2002, 303(3): 299-345.
[42] [42] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism[J]. J Non-Cryst Solids, 2002, 303(3): 346-353.
[43] [43] HE M, JIA J, ZHAO J, et al. Glass-ceramic phosphors for solid state lighting: A review[J]. Ceram Int, 2021, 47(3): 2963-2980.
Get Citation
Copy Citation Text
DAI Xiaoru, ZHAO Junjie, XU Xiuxia, LIU Yong, QIAO Xusheng, DU Jincheng, FAN Xianping. Advances inMolecular Dynamics Simulation of Glass Structures and Properties Calculation[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2691
Category:
Received: Mar. 26, 2021
Accepted: --
Published Online: Feb. 11, 2022
The Author Email: QIAO Xusheng (qiaoxus@zju.edu.cn)
CSTR:32186.14.