Journal of the Chinese Ceramic Society, Volume. 49, Issue 12, 2691(2021)

Advances inMolecular Dynamics Simulation of Glass Structures and Properties Calculation

DAI Xiaoru1, ZHAO Junjie1, XU Xiuxia1, LIU Yong1, QIAO Xusheng1、*, DU Jincheng2, and FAN Xianping1
Author Affiliations
  • 1[in Chinese]
  • 2University of North Texas,Denton 76203
  • show less
    References(39)

    [2] [2] CORNING INCORPORATED. Gorilla Glass Victus[EB/OL]. [0-03-26]. https://www.corning.com/microsites/csm/gorillaglass/PI_ Sheets/2020/Corning%20Gorilla%20Glass%20Victus_PI%20Sheet.pdf.

    [3] [3] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling[J]. Chem Mater, 2016, 28(12): 4267-4277.

    [4] [4] WOODCOCK L V, ANGELL C A, CHEESEMAN P. Molecular dynamics studies of the vitreous state: Simple ionic systems and silica[J]. J Chem Phys, 1976, 65(4): 1565-1577.

    [5] [5] PEDONE A. Properties Calculations of silica-based glasses by atomistic simulations techniques: A review[J]. J Phys Chem C, 2009, 113(49): 20773-20784.

    [6] [6] DU J. Molecular Dynamics Simulations of Oxide Glasses [M]//MUSGRAVES J D, HU J and CALVEZ L. Springer Handbook of Glass. Cham: Springer International Publishing. 2019: 1131-1155.

    [7] [7] DU J. Challenges in Molecular dynamics simulations of multicomponent oxide glasses [M]//MASSOBRIO C, DU J, BERNASCONI M, SALMON P S. Molecular dynamics simulations of disordered materials: From network glasses to phase-change memory alloys. Cham: Springer International Publishing. 2015: 157-180.

    [8] [8] NAGAOKA M, SUZUKI Y, OKAMOTO T, et al. A hybrid MC/MD reaction method with rare event-driving mechanism: Atomistic realization of 2-chlorobutane racemization process in DMF solution[J]. Chem Phys Lett, 2013, 583: 80-86.

    [9] [9] SCHILLING T, DOROSZ S, SCHOPE H J, et al. Crystallization in suspensions of hard spheres: a Monte Carlo and molecular dynamics simulation study[J]. J Phys Condens Matter, 2011, 23(19): 194120.

    [10] [10] XIANG Y, DU J, SMEDSKJAER M M, et al. Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2013, 139(4): 044507.

    [11] [11] WAGNER J, HAIGIS V, LEYDIER M, et al. The structure of Y- and La-bearing aluminosilicate glasses and melts: A combined molecular dynamics and diffraction study[J]. Chem Geol, 2017, 461: 23-33.

    [12] [12] LEE K H, YANG Y, ZIEBARTH B, et al. Evaluation of classical interatomic potentials for molecular dynamics simulations of borosilicate glasses[J]. J Non-Cryst Solids, 2020, 528: 119736.

    [13] [13] CORNO M, PEDONE A. Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations[J]. Chem Phys Lett, 2009, 476(4-6): 218-222.

    [14] [14] MOUNTJOY G, AL-HASNI B M, STOREY C. Structural organisation in oxide glasses from molecular dynamics modelling[J]. J Non-Cryst Solids, 2011, 357(14): 2522-2529.

    [15] [15] PEDONE A, CHEN X, HILL R G, et al. Molecular dynamics investigation of halide-containing phospho-silicate bioactive glasses[J]. J Phys Chem B, 2018, 122(11): 2940-2948.

    [16] [16] BEEMAN D. Some multistep methods for use in molecular dynamics calculations[J]. J Comput Phys, 1976, 20(2): 130-139.

    [17] [17] GEAR C W. Numerical initial value problems in ordinary differential equations[M]. New York: Prentice-Hall Series in Automatic Computation, 1971.

    [18] [18] JONES J E. On the determination of molecular fields-II from the equation of state of a gas[J]. Proc R Soc London Ser A, 1924, 106(738): 463-477.

    [19] [19] BUCKINGHAM R A. The classical equation of state of gaseous helium, neon and argon[J]. Proc R Soc London Ser A, 1938, 168(933): 264-283.

    [20] [20] BUSING W R. Interpretation of the crystal structure of Li2BeF4 in terms of the Born‐Mayer‐Huggins model[J]. J Chem Phys, 1972, 57(7): 3008-3010.

    [21] [21] PEDONE A, MALAVASI G, MENZIANI M C, et al. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses[J]. J Phys Chem B, 2006, 110(24): 11780-11795.

    [22] [22] JOHNSON R, WILSON W. Defect calculations for FCC and BCC metals [M]. PIERRE C G, JOE R B, JAFFEE R I. Interatomic Potentials and Simulation of Lattice Defects. US: Springer, 1972: 301-319.

    [23] [23] TERSOFF J. MODELING SOLID-STATE CHEMISTRY- INTERATOMIC POTENTIALS FOR MULTICOMPONENT SYSTEMS[J]. Phys Rev B, 1989, 39(8): 5566-5568.

    [24] [24] BASKES M I. Modified embedded-atom potentials for cubic materials and impurities[J]. Phys Rev B, 1992, 46(5): 2727-2742.

    [27] [27] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J Chem Phys, 1980, 72(4): 2384-2393.

    [28] [28] SWOPE W C, ANDERSEN H C, BERENS P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters[J]. J Chem Phys, 1982, 76(1): 637-649.

    [29] [29] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. J Phys Chem, 1987, 91(19): 4950-4963.

    [31] [31] ZHAO J, MA R, CHEN X, et al. From phase separation to nanocrystallization in fluorosilicate glasses: structural design of highly luminescent glass-ceramics[J]. J Phys Chem C, 2016, 120(31): 17726-17732.

    [32] [32] DENG L, DU J. Development of boron oxide potentials for computer simulations of multicomponent oxide glasses[J]. J Am Ceram Soc, 2019, 102(5): 2482-2505.

    [33] [33] DU J, CORMACK A N. The medium range structure of sodium silicate glasses: a molecular dynamics simulation[J]. J Non-Cryst Solids, 2004, 349: 66-79.

    [34] [34] YUAN X, CORMACK A N. Efficient algorithm for primitive ring statistics in topological networks[J]. Comput Mater Sci, 2002, 24(3): 343-360.

    [35] [35] ZHAO Y, DU J, QIAO X, et al. Ionic self-diffusion of Na2O-Al2O3-SiO2 glasses from molecular dynamics simulations[J]. J Non-Cryst Solids, 2020, 527: 119734.

    [36] [36] KARPUKHINA N, HILL R G, LAW R V. Crystallisation in oxide glasses-a tutorial review[J]. Chem Soc Rev, 2014, 43(7): 2174-2186.

    [37] [37] PHILLIPS J. Topology of covalent non-crystalline solids III: kinetic model of the glass transition[J]. J Non-Cryst Solids, 1981, 44(1): 17-30.

    [38] [38] VOLLMAYR K, KOB W, BINDER K. Cooling-rate effects in amorphous silica: A computer-simulation study[J]. Phys Rev B, 1996, 54(22): 15808-15827.

    [39] [39] DENG L, DU J. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations[J]. J Chem Phys, 2018, 148(2): 024504.

    [40] [40] LUSVARDI G, MALAVASI G, TARSITANO F, et al. Quantitative structure-property relationships of potentially bioactive fluoro phospho-silicate glasses[J]. J Phys Chem B, 2009, 113(30): 10331-10338.

    [41] [41] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. I. Silicate systems[J]. J Non-Cryst Solids, 2002, 303(3): 299-345.

    [42] [42] HUDON P, BAKER D R. The nature of phase separation in binary oxide melts and glasses. II. Selective solution mechanism[J]. J Non-Cryst Solids, 2002, 303(3): 346-353.

    [43] [43] HE M, JIA J, ZHAO J, et al. Glass-ceramic phosphors for solid state lighting: A review[J]. Ceram Int, 2021, 47(3): 2963-2980.

    Tools

    Get Citation

    Copy Citation Text

    DAI Xiaoru, ZHAO Junjie, XU Xiuxia, LIU Yong, QIAO Xusheng, DU Jincheng, FAN Xianping. Advances inMolecular Dynamics Simulation of Glass Structures and Properties Calculation[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2691

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 26, 2021

    Accepted: --

    Published Online: Feb. 11, 2022

    The Author Email: QIAO Xusheng (qiaoxus@zju.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics