Journal of Synthetic Crystals, Volume. 50, Issue 7, 1348(2021)
Mode Responses of Microwave Plasmonic Resonator by Exploiting Group Representation Theory
[1] [1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
[2] [2] MAIER S A. Surface plasmon polaritons at metal / insulator interfaces[M]//Plasmonics: Fundamentals and Applications. New York, NY: Springer US, 2007: 21-37.
[3] [3] MUHLSCHLEGEL P. Resonant optical antennas[J]. Science, 2005, 308(5728): 1607-1609.
[4] [4] CROZIER K B, SUNDARAMURTHY A, KINO G S, et al. Optical antennas: resonators for local field enhancement[J]. Journal of Applied Physics, 2003, 94(7): 4632-4642.
[5] [5] LI W Y, CAMARGO P H C, LU X M, et al. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano Letters, 2009, 9(1): 485-490.
[6] [6] NIE S, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106.
[7] [7] ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453.
[8] [8] LIU N, WEISS T, MESCH M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing[J]. Nano Letters, 2010, 10(4): 1103-1107.
[9] [9] HUTTER E, FENDLER J. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706.
[10] [10] PORS A, MORENO E, MARTIN-MORENO L, et al. Localized spoof plasmons arise while texturing closed surfaces[J]. Physical Review Letters, 2012, 108(22): 223905.
[11] [11] SHEN X P, CUI T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 2014, 8(1): 137-145.
[12] [12] GAO Z, GAO F, ZHANG Y M, et al. Forward/backward switching of plasmonic wave propagation using sign-reversal coupling[J]. Advanced Materials, 2017, 29(26): 1700018.
[13] [13] LIAO Z, LUO G Q, MA H F, et al. Localized surface magnetic modes propagating along a chain of connected subwavelength metamaterial resonators[J]. Physical Review Applied, 2018, 10(3): 034054.
[14] [14] LIAO Z, SHEN X P, PAN B C, et al. Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions[J]. ACS Photonics, 2015, 2(6): 738-743.
[15] [15] YANG B J, ZHOU Y J, XIAO Q X. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line[J]. Optics Express, 2015, 23(16): 21434-21442.
[16] [16] SU H, SHEN X P, SU G X, et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle[J]. Laser & Photonics Reviews, 2018, 12(9): 1800010.
[17] [17] ZHANG Y F, ZHANG Q L, CHAN C H, et al. Emission of orbital angular momentum based on spoof localized surface plasmons[J]. Optics Letters, 2019, 44(23): 5735-5738.
[18] [18] HUIDOBRO P A, SHEN X P, CUERDA J, et al. Magnetic localized surface plasmons[J]. Physical Review X, 2014, 4(2): 021003.
[19] [19] LIAO Z, PAN B C, SHEN X, et al. Multiple Fano resonances in spoof localized surface plasmons[J]. Optics Express, 2014, 22(13): 15710-15717.
[20] [20] GAO F, GAO Z, SHI X H, et al. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances[J]. Optics Express, 2015, 23(5): 6896-6902.
[21] [21] CHEW W, TONG M, HU B. Integral equation methods for electromagnetic and elastic waves[J]. Synthesis Lectures on Computational Electromagnetics, 2008, 3(1):1-241.
[22] [22] DRESSELHAUS M S, DRESSELHAUS G, JORIO A. Group theory: application to the physics of condensed matter[M]. Berlin: Springer-Verlag, 2008: 29-70.
[23] [23] GELESSUS A. Character tables for chemically important point groups[DB/OL].http://symmetry.jacobs-university.de/group.html.
[24] [24] COLLINS J T, ZHENG X Z, BRAZ N V S, et al. Enantiomorphing chiral plasmonic nanostructures: a counterintuitive sign reversal of the nonlinear circular dichroism[J]. Advanced Optical Materials, 2018, 6(14): 1800153.
[25] [25] KUPPE C, ZHENG X Z, WILLIAMS C, et al. Measuring optical activity in the far-field from a racemic nanomaterial: diffraction spectroscopy from plasmonic nanogratings[J]. Nanoscale Horizons, 2019, 4(5): 1056-1062.
[26] [26] LIAO Z, LUO Y, FERNNDEZ-DOMNGUEZ A I, et al. High-order localized spoof surface plasmon resonances and experimental verifications[J]. Sci Rep, 2015, 5: 9590.
[27] [27] BUKOV M, D′ALESSIO L, POLKOVNIKOV A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering[J]. Advances in Physics, 2015, 64(2): 139-226.
[28] [28] ECKARDT A, ANISIMOVAS E. High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective[J]. New Journal of Physics, 2015, 17(9): 093039.
[29] [29] SONG W G, CHEN Y X, LI H M, et al. Gauge-induced Floquet topological states in photonic waveguides[J]. Laser & Photonics Reviews, 2021, 15: 2000584.
[30] [30] JACKIW R, REBBI C. Solitons with fermion number 1/2[J]. Physical Review D, 1976, 13(12): 3398-3409.
[31] [31] CHERPAKOVA Z F, JRG C, DAUER C, et al. Limits of topological protection under local periodic driving[J]. Light: Science & Applications, 2019, 8: 63.
[32] [32] PAN Y M, WANG B. Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators[J]. Physical Review Research, 2020, 2(4): 043239.
Get Citation
Copy Citation Text
YANG Jie, WANG Jiafu, JIA Yuxiang, CHEN Wei, QU Shaobo. Mode Responses of Microwave Plasmonic Resonator by Exploiting Group Representation Theory[J]. Journal of Synthetic Crystals, 2021, 50(7): 1348
Category:
Received: Apr. 21, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email:
CSTR:32186.14.