Journal of Synthetic Crystals, Volume. 50, Issue 3, 454(2021)
Theoretical Calculation of Optical Properties of Zn2(OH)PO4 and Its Experimental Verification
[1] [1] LUO M, LIN C S, LIN D H, et al. Rational design of the metal-free KBe2BO3F2·(KBBF) family member C(NH2)3SO3F with ultraviolet optical nonlinearity[J]. Angewandte Chemie, 2020, 132(37): 16112-16115.
[2] [2] MUTAILIPU M, PAN S L. Emergent deep-ultraviolet nonlinear optical candidates[J]. Angewandte Chemie International Edition, 2020, 59(46): 20302-20317.
[3] [3] ZHANG B B, SHI G Q, YANG Z H, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie International Edition, 2017, 56(14): 3916-3919.
[4] [4] GUO S, KANG L, LIU L J, et al. Deep-ultraviolet nonlinear optical crystal NaBe2BO3F2-structure, growth and optical properties[J]. Journal of Crystal Growth, 2019, 518: 45-50.
[5] [5] LI Z H, WU Y C, FU P Z, et al. Crystal growth of Na5B2P3O13[J]. Chemistry Letters, 2002, 31(6): 560-561.
[6] [6] HU Z G, YOSHIMURA M, MURAMATSU K, et al. A new nonlinear optical crystal-BaAlBO3F2(BABF)[J]. Japanese Journal of Applied Physics, 2002, 41(Part 2, No. 10B): L1131-L1133.
[7] [7] LAUDISE R A, CAVA R J, CAPORASO A J. Phase relations, solubility and growth of potassium titanyl phosphate, KTP[J]. Journal of Crystal Growth, 1986, 74(2): 275-280.
[8] [8] GUO S, JIANG X X, LIU L J, et al. BaBe2BO3F3: a KBBF-type deep-ultraviolet nonlinear optical material with reinforced [Be2BO3F2]∞ layers and short phase-matching wavelength[J]. Chemistry of Materials, 2016, 28(24): 8871-8875.
[9] [9] ZHAO S G, GONG P F, LUO S Y, et al. Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal[J]. Journal of the American Chemical Society, 2015, 137(6): 2207-2210.
[10] [10] HUANG H W, CHEN C T, WANG X Y, et al. Ultraviolet nonlinear optical crystal: CsBe2Bo3F2[J]. Journal of the Optical Society of America B, 2011, 28(9): 2186.
[11] [11] LIEBERTZ J, STHR S. Zur tieftemperaturphase von BaB2O4[J]. Zeitschrift Für Kristallographie, 1983, 165(1/2/3/4): 91-93.
[12] [12] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet shg CRYSTAL-β-BaB2O4[J]. Science in China, Ser B, 1985, 28(3): 235-243.
[13] [13] LI J, MA Z J, HE C, et al. An effective strategy to achieve deeper coherent light for LiB3O5[J]. Journal of Materials Chemistry C, 2016, 4: 1926-1934.
[14] [14] ZHAO S Q, HUANG C E, ZHANG H W. Crystal growth and properties of lithium triborate[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 805-810.
[15] [15] MARKGRAF S A, FURUKAWA Y, SATO M. Top-seeded solution growth of LiB3O5[J]. Journal of Crystal Growth, 1994, 140(3/4): 343-348.
[16] [16] WANG X L, LIU L J, XU B, et al. Deep-UV absorption study of nonlinear optical crystal KBe2BO3F2[J]. Optical Materials, 2014, 36(12): 1991-1994.
[17] [17] KANG LEI, LIN Z S, LIU F, et al. Removal of a-site alkaline earth metal cations in KBe2BO3F2-type layered structures to enhance the deep-ultraviolet nonlinear optical capacity[J]. Inorganic Chemisity, 2018, 57: 11146-11156.
[18] [18] ZHAO S, GONG P, BAI L, et al. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications[J]. Nature Communications, 2014, 5: 4019.
[19] [19] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648.
[20] [20] ZHANG B B, SHI G Q, YANG Z H, et al. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie International Edition, 2017, 56(14): 3916-3919.
[21] [21] WANG Y, ZHANG B B, PAN S L, et al. Cation-tuned synthesis of fluorooxoborates: approaching the optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 130: 2172-2176.
[22] [22] MUTAILIPU M, ZHANG M, ZHANG B B, et al. SrB5O7F3: the first asymmetric alkaline-earth fluorooxoborate with unprecedented [B5O9F3]6- functionalized chromophore[J]. Angewandte Chemie International Edition, 2018, 57: 6095.
[23] [23] LUO M, FEI L, SONG Y X, et al. Correction to “M2B10O14F6 (M=Ca, Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials”[J]. Journal of the American Chemical Society, 2018, 140(20): 6509.
[24] [24] CHEN C T, LIU G Z. Recent advances in nonlinear optical and electro-optical materials[J]. Annual Review of Materials Science, 1986, 16(1): 203-243.
[25] [25] CHEN C T, YE N, LIN J, et al. Computer-assisted design for nonlinear optical crystals[C]//Proc SPIE 3556, Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications II, 1998, 3556: 14-20.
[26] [26] CASTEP3.5 Program developed by Molecular Simulation Inc. [CP]. (1997).
[27] [27] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): a1133.
[28] [28] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, Condensed Matter, 1992, 45(23): 13244-13249.
[29] [29] LIN J, LEE M H, LIU Z P, et al. Mechanism for linear and nonlinear optical effects in β-BaB2O4crystals[J]. Physical Review B, 1999, 60(19): 13380.
[30] [30] LIN Z S, WANG Z Z, CHEN C T, et al. Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal[J]. Chemical Physics Letters, 2003, 367(5/6): 523-527.
[31] [31] LI L, WANG Y, LEI B H, et al. LiRb2PO4: a new deep-ultraviolet nonlinear optical phosphate with a large SHG response[J]. Journal of Materials Chemistry C, 2017, 5(2): 269-274.
[32] [32] KALIM SHAIKH, LAD A B AND PAWAR B H. Growth and properties of ADP single crystal[J]. Advances in Applied Science Research, 2015, 6(4): 61-64.
[33] [33] KAWAHARA A, MORITANI H, YAMAKAWA J. Crystal structure of synthetic zinc monophosphate Zn2(OH)PO4: a polymorph of tarbuttite[J]. Mineralogical Journal, 1994, 17(3): 132-139.
[34] [34] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. DOI: 10.1524/zkri.220.5.567.65075.
[35] [35] LIN J S, QTEISH A, PAYNE M C, et al. Optimized and transferable nonlocal separableab initiopseudopotentials[J]. Physical Review B, 1993, 47(8): 4174.
[36] [36] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188.
[37] [37] GODBY R W, SCHLTER M, SHAM L J. Self-energy operators and exchange-correlation potentials in semiconductors[J]. Physical Review B, Condensed Matter, 1988, 37(17): 10159-10175.
[38] [38] WANG C S, KLEIN B M. First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. II. Optical properties[J]. Physical Review B, 1981, 24(6): 3417.
[39] [39] LEE M H, YANG C H, JAN J H. Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials[J]. Physical Review B, 2004, 70(23): 235110.
[40] [40] CHEN C T, LI R K, WU Y C, et al. Nonlinear optical borate crystals, principles and applications[J]. Discrete Mathematics, 2012, 26(2): 43-50.
[41] [41] KURTZ S K, PERRY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813.
Get Citation
Copy Citation Text
LUO Nannan, CAO Guowei, QIE Yuanyuan, ZHANG Ran, WANG Chunxiao, GONG Pifu, LI Zhihua, LIN Zheshuai. Theoretical Calculation of Optical Properties of Zn2(OH)PO4 and Its Experimental Verification[J]. Journal of Synthetic Crystals, 2021, 50(3): 454
Category:
Received: Nov. 24, 2020
Accepted: --
Published Online: Apr. 15, 2021
The Author Email: Nannan LUO (2692535394@qq.com)
CSTR:32186.14.