Journal of Synthetic Crystals, Volume. 50, Issue 9, 1640(2021)
Stable Configurations of Diamond (001) Surface Covered by Cu with Various Coverages and Their Electronic Properties
[1] [1] YU Y, GU C Z, XU L F, et al. Ab initiostructural characterization of a hydrogen-covered diamond (001) surface[J]. Physical Review B, 2004, 70(12): 125423.
[2] [2] KAWASHIMA H, NOGUCHI H, MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates[J]. Applied Physics Express, 2015, 8(10): 104103.
[3] [3] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.
[4] [4] IACOBUCCI S, ALIPPI P, CALVANI P, et al. Electronic structure of hydrogenated diamond: microscopical insight into surface conductivity[J]. Physical Review B, 2016, 94(4): 045307.
[5] [5] CUI J B, RISTEIN J, LEY L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface[J]. Physical Review Letters, 1998, 81(2): 429-432.
[6] [6] TIWARI A K, GOSS J P, BRIDDON P R, et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films[J]. EPL (Europhysics Letters), 2014, 108(4): 46005.
[7] [7] TIWARI A K, GOSS J P, BRIDDON P R, et al. Effect of different surface coverages of transition metals on the electronic and structural properties of diamond[J]. Physica Status Solidi (a), 2012, 209(9): 1697-1702.
[8] [8] YANG H X, XU L F, GU C Z, et al. First-principles study of oxygenated diamond (001) surfaces with and without hydrogen[J]. Applied Surface Science, 2007, 253(9): 4260-4266.
[9] [9] O′DONNELL K M, MARTIN T L, EDMONDS M T, et al. Photoelectron emission from lithiated diamond[J]. Physica Status Solidi (a), 2014, 211(10): 2209-2222.
[10] [10] GEIS M W, TWICHELL J C, MACAULAY J, et al. Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment[J]. Applied Physics Letters, 1995, 67(9): 1328-1330.
[11] [11] O′DONNELL K M, EDMONDS M T, RISTEIN J, et al. Diamond surfaces with air-stable negative electron affinity and giant electron yield enhancement[J]. Advanced Functional Materials, 2013, 23(45): 5608-5614.
[12] [12] VERONA C, CICCOGNANI W, COLANGELI S, et al. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators[J]. Journal of Applied Physics, 2016, 120(2): 025104.
[13] [13] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. Journal of Physics Condensed Matter, 2016, 29(2): 025003.
[15] [15] GUO H B, QI Y, LI X D. Adhesion at diamond/metal interfaces: a density functional theory study[J]. Journal of Applied Physics, 2010, 107(3): 033722.
[16] [16] QI T, DONG L J, QIAO Y, et al. Enhanced electron field emission of Cu implanted microcrystalline diamond films after annealing[J]. Vacuum, 2016, 134: 141-149.
[19] [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
[21] [21] VAN DE WALLE C G, MARTIN R M. Theoretical study of band offsets at semiconductor interfaces[J]. Physical Review B, Condensed Matter, 1987, 35(15): 8154-8165.
[22] [22] SQUE S J, JONES R, BRIDDON P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Physical Review B, 2006, 73(8): 085313.
[23] [23] JIA Y, ZHU W G, WANG E G, et al. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Phys Rev Lett, 2005, 94: 086101.
[25] [25] GOLUBEVA E N, ZUBANOVA E M, ZHIDOMIROV G M. The nature of Cu-C bond and copper oxidation state in chloroorganocuprates [CuClnCH3]2[J]. Journal of Physical Organic Chemistry, 2013, 26(9): 724-729.
[26] [26] WU K P, MA W F, SUN C X, et al. Two dimensional hole gas induced by the heterointerface of nonpolar plane AlN(1-100)/H-terminated (100) diamond[J]. Computational Materials Science, 2018, 145: 191-196.
[27] [27] WU K P, LIAO M Y, SANG L W, et al. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface[J]. Journal of Applied Physics, 2018, 123(16): 161599.
[28] [28] DELCHAR T A. Oxygen chemisorption on copper single crystals[J]. Surface Science, 1971, 27(1): 11-20.
[29] [29] BAUMANN P K, NEMANICH R J. Characterization of copper-diamond (100), (111), and (110) interfaces: electron affinity and Schottky barrier[J]. Physical Review B, 1998, 58(3): 1643-1654.
[30] [30] BAUMANN P K, NEMANICH R J. Electron affinity and Schottky barrier height of metal-diamond (100), (111), and (110) interfaces[J]. Journal of Applied Physics, 1998, 83(4): 2072-2082.
Get Citation
Copy Citation Text
WU Kongping, ZHANG Leng, WANG Danbei, XIAO Liu, CHEN Zelong, ZHANG Jingchen, ZHANG Pengzhan, LIU Fei, TANG Kun, YE Jiandong, GU Shulin. Stable Configurations of Diamond (001) Surface Covered by Cu with Various Coverages and Their Electronic Properties[J]. Journal of Synthetic Crystals, 2021, 50(9): 1640
Category:
Received: May. 18, 2021
Accepted: --
Published Online: Nov. 8, 2021
The Author Email: Kongping WU (kpwu@jit.edu.cn)
CSTR:32186.14.