Journal of Synthetic Crystals, Volume. 50, Issue 9, 1640(2021)

Stable Configurations of Diamond (001) Surface Covered by Cu with Various Coverages and Their Electronic Properties

WU Kongping1、*, ZHANG Leng1, WANG Danbei1, XIAO Liu1, CHEN Zelong1, ZHANG Jingchen1, ZHANG Pengzhan1, LIU Fei1, TANG Kun2, YE Jiandong2, and GU Shulin2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] YU Y, GU C Z, XU L F, et al. Ab initiostructural characterization of a hydrogen-covered diamond (001) surface[J]. Physical Review B, 2004, 70(12): 125423.

    [2] [2] KAWASHIMA H, NOGUCHI H, MATSUMOTO T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates[J]. Applied Physics Express, 2015, 8(10): 104103.

    [3] [3] UEDA K, KAWAMOTO K, ASANO H. High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes[J]. Diamond and Related Materials, 2015, 57: 28-31.

    [4] [4] IACOBUCCI S, ALIPPI P, CALVANI P, et al. Electronic structure of hydrogenated diamond: microscopical insight into surface conductivity[J]. Physical Review B, 2016, 94(4): 045307.

    [5] [5] CUI J B, RISTEIN J, LEY L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface[J]. Physical Review Letters, 1998, 81(2): 429-432.

    [6] [6] TIWARI A K, GOSS J P, BRIDDON P R, et al. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films[J]. EPL (Europhysics Letters), 2014, 108(4): 46005.

    [7] [7] TIWARI A K, GOSS J P, BRIDDON P R, et al. Effect of different surface coverages of transition metals on the electronic and structural properties of diamond[J]. Physica Status Solidi (a), 2012, 209(9): 1697-1702.

    [8] [8] YANG H X, XU L F, GU C Z, et al. First-principles study of oxygenated diamond (001) surfaces with and without hydrogen[J]. Applied Surface Science, 2007, 253(9): 4260-4266.

    [9] [9] O′DONNELL K M, MARTIN T L, EDMONDS M T, et al. Photoelectron emission from lithiated diamond[J]. Physica Status Solidi (a), 2014, 211(10): 2209-2222.

    [10] [10] GEIS M W, TWICHELL J C, MACAULAY J, et al. Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment[J]. Applied Physics Letters, 1995, 67(9): 1328-1330.

    [11] [11] O′DONNELL K M, EDMONDS M T, RISTEIN J, et al. Diamond surfaces with air-stable negative electron affinity and giant electron yield enhancement[J]. Advanced Functional Materials, 2013, 23(45): 5608-5614.

    [12] [12] VERONA C, CICCOGNANI W, COLANGELI S, et al. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators[J]. Journal of Applied Physics, 2016, 120(2): 025104.

    [13] [13] SCHENK A K, SEAR M J, TADICH A, et al. Oxidation of the silicon terminated (100) diamond surface[J]. Journal of Physics Condensed Matter, 2016, 29(2): 025003.

    [15] [15] GUO H B, QI Y, LI X D. Adhesion at diamond/metal interfaces: a density functional theory study[J]. Journal of Applied Physics, 2010, 107(3): 033722.

    [16] [16] QI T, DONG L J, QIAO Y, et al. Enhanced electron field emission of Cu implanted microcrystalline diamond films after annealing[J]. Vacuum, 2016, 134: 141-149.

    [19] [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

    [21] [21] VAN DE WALLE C G, MARTIN R M. Theoretical study of band offsets at semiconductor interfaces[J]. Physical Review B, Condensed Matter, 1987, 35(15): 8154-8165.

    [22] [22] SQUE S J, JONES R, BRIDDON P R. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Physical Review B, 2006, 73(8): 085313.

    [23] [23] JIA Y, ZHU W G, WANG E G, et al. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces[J]. Phys Rev Lett, 2005, 94: 086101.

    [25] [25] GOLUBEVA E N, ZUBANOVA E M, ZHIDOMIROV G M. The nature of Cu-C bond and copper oxidation state in chloroorganocuprates [CuClnCH3]2[J]. Journal of Physical Organic Chemistry, 2013, 26(9): 724-729.

    [26] [26] WU K P, MA W F, SUN C X, et al. Two dimensional hole gas induced by the heterointerface of nonpolar plane AlN(1-100)/H-terminated (100) diamond[J]. Computational Materials Science, 2018, 145: 191-196.

    [27] [27] WU K P, LIAO M Y, SANG L W, et al. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface[J]. Journal of Applied Physics, 2018, 123(16): 161599.

    [28] [28] DELCHAR T A. Oxygen chemisorption on copper single crystals[J]. Surface Science, 1971, 27(1): 11-20.

    [29] [29] BAUMANN P K, NEMANICH R J. Characterization of copper-diamond (100), (111), and (110) interfaces: electron affinity and Schottky barrier[J]. Physical Review B, 1998, 58(3): 1643-1654.

    [30] [30] BAUMANN P K, NEMANICH R J. Electron affinity and Schottky barrier height of metal-diamond (100), (111), and (110) interfaces[J]. Journal of Applied Physics, 1998, 83(4): 2072-2082.

    CLP Journals

    [1] XIE Jinglong, YUAN Guowen, LIAO Junjie, PAN Rui, FAN Xing, ZHANG Weiwei, YUAN Ziyuan, LI Chen, GAO Libo, LU Hong. Remote Epitaxy of Ge Nanorods Through Graphene[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1769

    Tools

    Get Citation

    Copy Citation Text

    WU Kongping, ZHANG Leng, WANG Danbei, XIAO Liu, CHEN Zelong, ZHANG Jingchen, ZHANG Pengzhan, LIU Fei, TANG Kun, YE Jiandong, GU Shulin. Stable Configurations of Diamond (001) Surface Covered by Cu with Various Coverages and Their Electronic Properties[J]. Journal of Synthetic Crystals, 2021, 50(9): 1640

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 18, 2021

    Accepted: --

    Published Online: Nov. 8, 2021

    The Author Email: Kongping WU (kpwu@jit.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics