Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 7, 975(2023)

Multimodal image semantic segmentation based on attention mechanism

Ji-you ZHANG, Rong-fen ZHANG*, Yu-hong LIU, and Wen-hao YUAN
Author Affiliations
  • College of Big Data & Information Engineering,Guizhou University,Guiyang 550025,China
  • show less
    Figures & Tables(8)
    Network architecture diagram presented in this paper
    Schematic diagram of attention module operation
    Schematic diagram of two convolution block operations in the upsampling module
    Visual comparison of segmentation results of some network models
    • Table 1. Each module configuration in the decoder

      View table
      View in Article

      Table 1. Each module configuration in the decoder

      模块卷积块名称卷积操作Keneral sizeStridepadding
      上采样模块第一个转置卷积块普通卷积3×311
      普通卷积3×311
      第二个转置卷积块普通卷积3×311
      转置卷积2×211
      转置卷积2×211
      特征提取模块普通卷积3×311
    • Table 2. Comparison of results of serial network models on MFNet test set

      View table
      View in Article

      Table 2. Comparison of results of serial network models on MFNet test set

      网络模型汽车行人自行车车道线停车位护栏色锥

      地面

      凸起物

      mAccmIoU
      AccIoUAccIoUAccIoUAccIoUAccIoUAccIoUAccIoUAccIoU
      MFNet77.265.967.058.953.942.936.229.919.19.90.88.530.325.230.027.745.139.7
      FuseNet81.075.675.266.364.551.951.037.828.715.00.00.031.421.451.945.052.445.6
      DepthAwareCNN85.277.061.753.476.056.540.230.99.929.322.86.432.930.136.532.355.146.1
      RTFNet-15293.087.479.370.376.862.760.745.338.529.80.00.045.529.174.755.763.153.2
      FuseSeg-16193.187.981.471.778.564.668.444.829.122.763.76.455.846.966.447.970.654.5
      FEANet93.387.882.771.176.761.165.546.526.622.170.86.666.655.377.348.973.255.3
      本文方法95.084.780.871.777.061.770.444.050.633.165.38.463.852.282.447.976.055.7
    • Table 3. Performance comparison of a series of models on a day-night test set

      View table
      View in Article

      Table 3. Performance comparison of a series of models on a day-night test set

      网络模型白天图像测试集夜间图像测试集
      mAccmIoUmAccmIoU
      MFNet42.636.141.136.8
      FuseNet49.541.048.943.9
      DepthAwareCNN50.642.450.743.2
      RTFNet-15260.045.860.754.8
      FuseSeg-16162.147.867.354.6
      FEANet62.547.270.556.4
      本文方法67.247.373.358.4
    • Table 4. Control group experimental configuration details and results

      View table
      View in Article

      Table 4. Control group experimental configuration details and results

      对照组名称实验设置评价指标
      RGB编码器注意力模块热红外图像注意力模块编码器通过相加融合编码器特征图通过拼接融合解码器特征图通过相加融合解码器特征图通过拼接融合mACCmIOU
      对照组A72.0053.50
      对照组B73.7055.20
      对照组C70.5055.10
      对照组D71.6054.00
      对照组E62.2049.00
      本文网络76.0055.70
    Tools

    Get Citation

    Copy Citation Text

    Ji-you ZHANG, Rong-fen ZHANG, Yu-hong LIU, Wen-hao YUAN. Multimodal image semantic segmentation based on attention mechanism[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(7): 975

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 16, 2022

    Accepted: --

    Published Online: Jul. 31, 2023

    The Author Email: Rong-fen ZHANG (rfzhang@gzu.edu.cn)

    DOI:10.37188/CJLCD.2022-0309

    Topics