Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1732(2022)
Advance in Theory and Technology of Rapid Growth of Large-Size Crystals
[1] [1] DE YOREO J J, BURNHAM A K, WHITMAN P K. Developing KH2PO4 and KD2PO4 crystals for the world’s most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152.
[2] [2] TYAGI M, SARKAR P S, SINGH A K, et al. Development of neutron detector based on Gd3Ga3Al2O12∶Ce single crystals[J]. IEEE Transactions on Nuclear Science, 2019, 66(4): 724-728.
[3] [3] KOSTIC' S, LAZAREVIC' Z, ROMCˇEVIC' M, et al. Spectroscopic characterization of YAG and Nd∶YAG single crystals[J]. Physica Scripta, 2014, T162: 014026.
[4] [4] PALATNIKOV M, SIDOROV N, KADETOVA A, et al. Growth and concentration dependences of properties of LiNbO3∶Tb crystals grown in a single technological cycle[J]. Optical Materials, 2021, 122: 111755.
[5] [5] ABDI F, AILLERIE M, BOURSON P, et al. Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition[J]. Journal of Applied Physics, 1998, 84(4): 2251-2254.
[6] [6] GRISARD A, LALLIER E, POLGR K, et al. Low electric field periodic poling of thick stoichiometric lithium niobate[J]. Electronics Letters, 2000, 36(12): 1043-1044.
[9] [9] KOSSEL W. Extending the law of Bravais[M]. Gttingen: Nachr Ges Wiss Gttingen, 1927: 135-143.
[10] [10] FRANK F C. The influence of dislocations on crystal growth[J]. Discussions of the Faraday Society, 1949, 5(0): 48-54.
[12] [12] JACKSON K. Liquid metals and solidification [P]. ASM Cleveland, 1958:174.
[14] [14] SUN C T, SONG S Y, XUE D F, et al. Crystallization of oxides as functional materials[J]. Functional Materials Letters, 2012, 5(2): 1230002.
[15] [15] SUN C T, XUE D F. Single crystal growth mechanism of sapphire[J]. Materials Technology, 2013, 28(5): 286-289.
[16] [16] SUN C T, XUE D F. Chemical bonding theory of single crystal growth and its application to 3″ YAG bulk crystal[J]. CrystEngComm, 2014, 16(11): 2129-2135.
[17] [17] CHEN K F, XUE D F. Fast growth of cerium-doped lutetium yttrium orthosilicate single crystals and their scintillation properties[J]. Journal of Rare Earths, 2021, 39(12): 1527-1532.
[19] [19] BORN M, GREEN H S, KIRKWOOD J G. A general kinetic theory of liquids[J]. Physics Today, 1950, 3(10): 35-37.
[20] [20] BROUGHTON J Q, GILMER G H, JACKSON K A. Crystallization rates of a lennard-Jones liquid[J]. Physical Review Letters, 1982, 49(20): 1496-1500.
[21] [21] SUN G, XU J, HARROWELL P. The mechanism of the ultrafast crystal growth of pure metals from their melts[J]. Nature Materials, 2018, 17(10): 881-886.
[22] [22] GAO Q, AI J D, TANG S X, et al. Fast crystal growth at ultra-low temperatures[J]. Nature Materials, 2021, 20(10): 1431-1439.
[23] [23] WANG D, WAN S M, YIN S T, et al. High temperature Raman spectroscopy study on the microstructure of the boundary layer around a growing LiB3O5 crystal[J]. CrystEngComm, 2011, 13(16): 5239-5242.
[24] [24] ZHANG D M, WANG D, ZHANG J, et al. In situ investigation of the microstructure of KGd(WO4)2 crystal growth boundary layer by confocal laser Raman microscopy[J]. CrystEngComm, 2012, 14(24): 8722-8726.
[25] [25] MIKHEEV L V, CHERNOV A A. Mobility of a diffuse simple crystal—melt interface[J]. Journal of Crystal Growth, 1991, 112(2/3): 591-596.
[26] [26] VERNEUIL A. The artificial production of the ruby by fusion[J]. CR Acad Sci Paris Sci/Life Sci, 1902, 135: 791-794.
[27] [27] NAKATSUKA M, FUJIOKA K, KANABE T, et al. Rapid growth over 50 mm/day of water-soluble KDP crystal[J]. Journal of Crystal Growth, 1997, 171(3/4): 531-537.
[29] [29] ZHUANG X X, YE L W, ZHENG G Z, et al. The rapid growth of large-scale KDP single crystal in brief procedure[J]. Journal of Crystal Growth, 2011, 318(1): 700-702.
[30] [30] SM H, HAR A, KOMPANY A. First-principles study of the optical properties of pure alpha-Al2O3 and La aluminates[J]. The European Physical Journal B, Condensed Matter Physics, 2005, 43(4): 439-444.
[31] [31] MOGILEVSKY R, SHARAFUTDINOVA L G, MITTL S D. Optical properties of sapphire[C]//Photonic Devices + Applications. Proc SPIE 7056, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II, San Diego, California, USA. 2008, 7056: 43-54.
[37] [37] POLGR K, PTER , KOVCS L, et al. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method[J]. Journal of Crystal Growth, 1997, 177(3/4): 211-216.
[38] [38] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(3): e1806452.
[39] [39] PREZAS P, GRAA M. Structural characterization of lithium niobate nanoparticles prepared by the sol-gel process, using X-ray and Raman spectroscopy and scanning electron microscopy[M]//MARK T S. Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. [S.l.]: InTech, 2016.
[40] [40] CHEN K F, LI Y L, PENG C, et al. Microstructure and defect characteristics of lithium niobate with different Li concentrations[J]. Inorganic Chemistry Frontiers, 2021, 8(17): 4006-4013.
[41] [41] KITAMURA K, YAMAMOTO J K, IYI N, et al. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system[J]. Journal of Crystal Growth, 1992, 116(3/4): 327-332.
[42] [42] KAN S J, SAKAMOTO M, OKANO Y, et al. LiNbO3 single crystal growth by the continuous charging Czochralski method with Li/Nb ratio control[J]. Journal of Crystal Growth, 1992, 119(3/4): 215-220.
[43] [43] POLGR K, PTER , FLDVRI I, et al. Structural defects in flux-grown stoichiometric LiNbO3 single crystals[J]. Journal of Crystal Growth, 2000, 218(2/3/4): 327-333.
[44] [44] ERDEI S, SCHLECHT R G. Growth of low-scattering single-domain photorefractive LiNbO3 crystals[J]. Proceedings of the IEEE, 1999, 87(12): 2121-2126.
[45] [45] NI D Q, WANG W Y, ZHANG D F, et al. Near stoichiometric LiNbO3 single-crystal growth by metal strip heated zone melting technique[J]. Journal of Crystal Growth, 2004, 265(3/4): 650.
[46] [46] LUH Y S, FEJER M M, BYER R L, et al. Stoichiometric LiNbO3 single-crystal fibers for nonlinear optical applications[J]. Journal of Crystal Growth, 1987, 85(1/2): 264-269.
[47] [47] BORDUI P F, NORWOOD R G, JUNDT D H, et al. Preparation and characterization of off-congruent lithium niobate crystals[J]. Journal of Applied Physics, 1992, 71(2): 875-879.
[50] [50] QUAN J L, YANG X, YANG M M, et al. Study on growth techniques and macro defects of large-size Nd∶YAG laser crystal[J]. Journal of Crystal Growth, 2018, 483: 200-205.
[51] [51] ZHU M D, QI H J, PAN M Y, et al. Growth and luminescent properties of Yb∶YAG and Ca co-doped Yb∶YAG ultrafast scintillation crystals[J]. Journal of Crystal Growth, 2018, 490: 51-55.
[52] [52] SELIM F A, SOLODOVNIKOV D, WEBER M H, et al. Identification of defects in Y3Al5O12 crystals by positron annihilation spectroscopy[J]. Applied Physics Letters, 2007, 91(10): 104105.
[53] [53] VORONKO Y K, SOBOL A A. Local inhomogeneity of garnet crystals doped with rare-earth ions[J]. Physica Status Solidi (a), 1975, 27(2): 657-663.
[54] [54] KAMARUDDIN W H A, TAN H K, ADAM M H, et al. The growth and growth mechanism of Nd∶YAG single crystals by Czochralski method[J]. AIP Conference Proceedings, 2008, 1017(1): 277-280.
[55] [55] HAN J C, GUO H X, ZHANG M F, et al. Characterization of large-sized Nd∶YAG single crystals grown by horizontal directional solidification[J]. Crystal Research and Technology, 2012, 47(5): 485-490.
[56] [56] KAJAN J, VOLKOV M, DAMAZYAN G, et al. Fabrication and characterization of high-dimension single-crystal Yb∶YAG ingots grown by horizontal directed crystallization method[J]. Cryst Res Technol, 2020, 55 (12): 2000105.
[57] [57] ZHANG M F, GUO H X, HAN J C, et al. Distribution of Neodymium and properties of Nd∶YAG crystal by horizontal directional solidification[J]. Journal of Crystal Growth, 2012, 340(1): 130-134.
[59] [59] LIU W J, WANG S L, GU Q T, et al. Growth, structural and optical properties of 12%-deuterated KDP Crystals[J]. Cryst Res Technol, 2013, 48(5): 314-320.
[60] [60] ZAITSEVA N P, RASHKOVICH L N, BOGATYREVA S V. Stability of KH2PO4 and K(H, D)2PO4 solutions at fast crystal growth rates[J]. Journal of Crystal Growth, 1995, 148(3): 276-282.
[61] [61] ZHANG L Y, WANG S L, LI T B, et al. 532 nm laser damage and nonlinear absorption of Cr2O2-7 doped KDP crystals[J]. Ceramics International, 2022, 48(8): 10620-10628.
[62] [62] SASAKI T, YOKOTANI A. Growth of large KDP crystals for laser fusion experiments[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 820-826.
[63] [63] XU D L, XUE D F. Fast growth of KDP[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 2157-2161.
[64] [64] WANG B, FANG C S, WANG S L, et al. The effects of Sn4+[J]. Journal of Crystal Growth, 2006, 297(2): 352-355.
[65] [65] WANG D L, LI T B, WANG S L, et al. Effect of Fe3+ on third-order optical nonlinearity of KDP single crystals[J]. CrystEngComm, 2016, 18(48): 9292-9298.
[66] [66] DERINGER V L, CARO M A, CSNYI G. Machine learning interatomic potentials as emerging tools for materials science[J]. Advanced Materials, 2019, 31(46): e1902765.
[67] [67] CALEGARI ANDRADE M F, KO H Y, ZHANG L F, et al. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics[J]. Chemical Science, 2020, 11(9): 2335-2341.
[68] [68] HE R, WU H Y, ZHANG L F, et al. Structural phase transitions in SrTiO3 from deep potential molecular dynamics[EB/OL]. 2022: arXiv: 2201.06902. https://arxiv.org/abs/2201.06902
[69] [69] RODRIGUEZ A, LAM S, HU M. Thermodynamic and transport properties of LiF and FLiBe molten salts with deep learning potentials[J]. ACS Applied Materials & Interfaces, 2021, 13(46): 55367-55379.
Get Citation
Copy Citation Text
LIU Feng, CHEN Kunfeng, PENG Chao, XUE Dongfeng. Advance in Theory and Technology of Rapid Growth of Large-Size Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1732
Category:
Received: Aug. 3, 2022
Accepted: --
Published Online: Nov. 18, 2022
The Author Email:
CSTR:32186.14.