Acta Optica Sinica, Volume. 40, Issue 23, 2312006(2020)

Method for Fast Detection of Infrared Targets Based on Key Points

Zhuang Miao1,2, Yong Zhang1、*, Ruimin Chen1,2, and Weihua Li1,2
Author Affiliations
  • 1Key Laboratory of Infrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(16)

    [1] Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies for accurate object detection and semantic segmentation. [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014, Columbus, OH, USA. New York: IEEE, 14632381(2014).

    [2] Xie J R, Li F M, Wei H et al. Enhancement of single shot multibox detector for aerial infrared target detection[J]. Acta Optica Sinica, 39, 0615001(2019).

    [3] Wu S C, Zuo Z R. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared and Millimeter Waves, 38, 371-380(2019).

    [4] Wang D, Shen T. Research on weak and small infrared target detection algorithm under complex sky background[J]. Acta Optica Sinica, 39, 0512001(2019).

    [5] Ma M Y, Wang D J, Sun H et al. Infrared dim-small target detection based on robust principal component analysis and multi-point constant false alarm[J]. Acta Optica Sinica, 39, 0810001(2019).

    [6] Ren S Q, He K, Girshick R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    [7] Redmon J, Divvala S, Girshick R et al. You only look once: unified, real-time object detection. [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 16526932(2016).

    [8] Redmon J, Farhadi A. YOLO9000: better, faster, stronger. [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 17355115(2017).

    [10] Law H, Deng J. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 128, 642-656(2020).

    [13] Sandler M, Howard J, Zhu M L et al. Mobilenetv2: inverted residuals and linear bottlenecks. [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, Utah, USA. New York: IEEE, 18311793(2018).

    [14] Zhang X Y, Zhou X Y, Lin M X et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices. [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 18326147(2018).

    [15] Ma N N, Zhang X Y, Zheng H T et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision: ECCV 2018. Lecture notes in computer science. Cham: Springer, 11218, 122-138(2018).

    [16] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 318-327(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zhuang Miao, Yong Zhang, Ruimin Chen, Weihua Li. Method for Fast Detection of Infrared Targets Based on Key Points[J]. Acta Optica Sinica, 2020, 40(23): 2312006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Aug. 17, 2020

    Accepted: Sep. 8, 2020

    Published Online: Nov. 23, 2020

    The Author Email: Zhang Yong (zybxy@sina.com)

    DOI:10.3788/AOS202040.2312006

    Topics