Laser & Optoelectronics Progress, Volume. 62, Issue 17, 1739009(2025)
Computational Ghost Imaging: From Classical Computation to Deep Learning Driven (Invited)
[2] Lin H Z, Liu W T, Sun S et al. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 39, 863-879(2022).
[7] Chen M L, Li E R, Gong W L et al. Ghost imaging lidar via sparsity constraints in real atmosphere[J]. Optics and Photonics Journal, 3, 83-85(2013).
[67] Tsaig Y, Donoho D L. Extensions of compressed sensing[J]. Signal Processing, 86, 549-571(2006).
[87] Minaee S, Boykov Y, Porikli F et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 3523-3542(2022).
[109] Liu X, Zhang F J, Hou Z Y et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 35, 857-876(2023).
[121] Chen Y F, Sun Z, Li X L. Underwater single-pixel imaging method based on object search and detail enhancement[J]. Acta Photonica Sinica, 53, 0401001(2024).
Get Citation
Copy Citation Text
Yifan Chen, Zhe Sun, Xuelong Li. Computational Ghost Imaging: From Classical Computation to Deep Learning Driven (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(17): 1739009
Category: AI for Optics
Received: Apr. 15, 2025
Accepted: May. 26, 2025
Published Online: Sep. 12, 2025
The Author Email: Zhe Sun (sunzhe@nwpu.edu.cn), Xuelong Li (li@nwpu.edu.cn)
CSTR:32186.14.LOP251007