Laser & Infrared, Volume. 54, Issue 6, 870(2024)

LiDAR point cloud completion network for power equipment components based on point feature transform

PEI Jia-hui1,2, JING Chao1,3, WANG Hui-min1, LI Xue-wei1, ZHANG Xing-zhong1,2、*, and CHENG Yong-qiang1,4
Author Affiliations
  • 1Shanxi Energy Internet Research Institute, Taiyuan 030000, China
  • 2School of Software, Taiyuan University of Technology, Jinzhong 030600, China
  • 3College of Artificial Intelligence, Xi'an Jiaotong University, Xi'an 710049, China
  • 4College of Information and Computer, Taiyuan University of Technology, Jinzhong 030600, China
  • show less
    References(14)

    [3] [3] Guo Yulan, Wang Hanyun, Hu Qingyong, et al. Deep learning for 3D point clouds: a survey[J/OL]. http://arxiv.org/abs/1912.12033.

    [4] [4] Qi C R, Su H, Mo K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, United States. New York: IEEE.2017: 652-660.

    [5] [5] Yang Y Q, Feng C, Shen Y, et al. Foldingnet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018: 206-215.

    [6] [6] Yuan W, Khot T, Held D, et al. PCN: Point completion network[C]//2018 International Conference on 3D Vision, September 5-8, 2018, Verona, Italy. New York: IEEE.2018: 728-737.

    [7] [7] Huang Z, Yu Y, Xu J, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 14-19, 2020, Seattle, United States. New York: IEEE, 2020: 7662-7670.

    [8] [8] Xiang P, Wen X, Liu Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolutionwith skip-transformer[C]//Proceedings of the IEEE/CVFInternational Conference on Computer Vision. Kuala Lumpur, Malaysia: IEEE, 2021: 5499-5509.

    [9] [9] Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//2008 IEEE International Conference on Neural Information Processing Systems. Long Beach, CA, USA. Curran Associates Inc, 2017: 5105-5114.

    [13] [13] Wang Y, Sun Y B, Liu Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.

    [14] [14] Liu H X, Dai Z H, SO D R, et al. Pay attention to MLPs[EB/OL]. https://arxiv org/abs/2105.08050v1, 2021-05-17.

    [17] [17] Angel X C, Thomas F, Leonidas G, et al. ShapeNet: an information-rich 3D model repository[EB/OL]. https://arxiv.org/abs/1512.03012.

    [18] [18] Borgefors G. Hierarchical chamfer matching: a parametric edge matching algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(6): 849-865.

    [19] [19] Rubner Y, Tomasi C, Guibas L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121.

    [20] [20] X Yu, Y Rao, Z Wang, et al. Pointr: diverse point cloud completion with geometry-aware transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021.

    [21] [21] H Xie, H Yao, S Zhou, et al. GRNet: gridding residual network for dense point cloud completion[C]//European Conference on Computer Vision (ECCV), 2020.

    Tools

    Get Citation

    Copy Citation Text

    PEI Jia-hui, JING Chao, WANG Hui-min, LI Xue-wei, ZHANG Xing-zhong, CHENG Yong-qiang. LiDAR point cloud completion network for power equipment components based on point feature transform[J]. Laser & Infrared, 2024, 54(6): 870

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 11, 2023

    Accepted: May. 21, 2025

    Published Online: May. 21, 2025

    The Author Email: ZHANG Xing-zhong (1659898176@qq.com)

    DOI:10.3969/j.issn.1001-5078.2024.06.005

    Topics