Acta Physica Sinica, Volume. 69, Issue 11, 116201-1(2020)

First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides

Qian-Ku Hu, Shuang-Hong Qin, Qing-Hua Wu, Dan-Dan Li, Bin Zhang, Wen-Feng Yuan, Li-Bo Wang, and Ai-Guo Zhou*
Author Affiliations
  • Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • show less
    Figures & Tables(8)
    The crystal structures of (a), (b) Ta3B3C; (c) Ta4B3C2; (d) Ta3BC2; (e) Ta6B4C3; (f) Ta7B4C4; (g) Ta7B6C3. The light brown, blue and pink spheres represent Ta, B, and C atoms, respectively. The Ta6B triangular prisms and Ta6C octahedrons are painted green and dark brown.
    Ternary phase diagrams of (a) Nb-B-C and (b) Ta-B-C. Red, stable; blue, metastable; green, unstable.
    Energy differences of (a) Nb-B-C and (b) Ta-B-C ternary phases with respect to their most competing phases as a function of temperature.
    Phonon dispersion curves of Nb-B-C and Ta-B-C ternary phases.
    Density of states of Nb-B-C and Ta-B-C ternary phases.
    • Table 1.

      Structural parameters of Nb(m + n + 2)B(2m + 2)Cn and Ta(m + n + 2)B(2m + 2)Cn crystals.

      不同成分Nb(m + n + 2)B(2m + 2)Cn和Ta(m + n + 2)B(2m + 2)Cn晶体的结构参数

      View table
      View in Article

      Table 1.

      Structural parameters of Nb(m + n + 2)B(2m + 2)Cn and Ta(m + n + 2)B(2m + 2)Cn crystals.

      不同成分Nb(m + n + 2)B(2m + 2)Cn和Ta(m + n + 2)B(2m + 2)Cn晶体的结构参数

      mn空间群模型晶格参数/Å模型晶格参数/Å
      abcabc
      01CmmmNb3B2C 3.25413.8083.141Ta3B2C 3.24013.6973.127
      02CmcmNb2BC 3.23518.3303.153Ta2BC 3.22018.1653.140
      03CmmmNb5B2C33.22522.9033.153Ta5B2C33.19922.6593.138
      04CmcmNb3BC23.21427.3763.156Ta3BC23.19827.1323.150
      11PmmmNb4B4C 3.29018.9943.145Ta4B4C 3.27718.8783.127
      12ImmmNb5B4C23.26723.6003.150Ta5B4C23.24823.3773.138
      13PmmmNb6B4C33.24328.0283.154Ta6B4C33.22527.8723.141
      14ImmmNb7B4C43.24232.5453.158Ta7B4C43.22432.3153.147
      21CmmmNb5B6C 3.30224.4143.134Ta5B6C 3.28924.2083.122
      22CmcmNb3B3C 3.28428.8773.144Ta3B3C 3.26728.6883.133
      23CmmmNb7B6C33.26433.3643.148Ta7B6C33.24633.1643.136
      24CmcmNb4B3C23.25737.8743.153Ta4B3C23.24337.6093.141
      31PmmmNb6B8C 3.30914.8893.137Ta6B8C 3.29814.7883.122
      32ImmmNb7B8C23.29034.2473.144Ta7B8C23.27634.0073.131
      33PmmmNb8B8C33.27619.3503.148Ta8B8C33.25819.2353.135
      34ImmmNb9B8C43.26843.2553.151Ta9B8C43.25242.9773.138
      41CmmmNb7B10C 3.31235.1923.131Ta7B10C 3.29934.9903.116
      42CmcmNb4B5C 3.29639.6943.139Ta4B5C 3.28039.4413.125
      43CmmmNb9B10C33.28144.2063.142Ta9B10C33.26343.9243.130
      44CmcmNb5B5C23.27348.7293.145Ta5B5C23.25748.4003.134
    • Table 2. Calculated formation enthalpies of different Nb-B-C and Ta-B-C phases (in eV/atom). represents the elements as the reactants, and indicates the most stable composite as the reactants.

      View table
      View in Article

      Table 2. Calculated formation enthalpies of different Nb-B-C and Ta-B-C phases (in eV/atom). represents the elements as the reactants, and indicates the most stable composite as the reactants.

      Phases$ \Delta{H}_{\rm{elements}} $$ \Delta{H}_{\rm{comp}} $最稳定竞争组合Phases$ \Delta{H}_{\rm{elements}} $$ \Delta{H}_{\rm{comp}} $最稳定竞争组合
      Nb3B2C –0.6200.070Nb3B4 + 6NbB + Nb6C5 = 5Nb3B2C Ta3B2C –0.6510.086Ta3BC2 + 3TaB = 2Ta3B2C
      Nb2BC –0.6190.029Nb3B4 + NbB + Nb6C5 = 5Nb2BC Ta2BC –0.6640.035Ta3BC2 + TaB = 2Ta2BC
      Nb5B2C3–0.5860.0363Nb3B4 + Nb7B4C4 + 4Nb6C5 = 8Nb5B2C3Ta5B2C3–0.6550.0213Ta3BC2 + TaB = 2Ta5B2C3
      Nb3BC2–0.5860.019Nb3B4 + 3Nb7B4C4 + 4Nb6C5 = 16Nb3BC2Ta3BC2–0.660–0.002TaB + 2TaC = Ta3BC2
      Nb4B4C –0.6790.0303Nb3B4 + Nb7B4C4 = 4Nb4B4C Ta4B4C –0.6910.044Ta7B4C4 + 3Ta3B4 = 4Ta4B4C
      Nb5B4C2–0.6680.006Nb3B4 + Nb7B4C4 = 2Nb5B4C2Ta5B4C2–0.6940.019Ta7B4C4 + Ta3B4 = 2Ta5B4C2
      Nb6B4C3–0.6450.005Nb3B4 + 3Nb7B4C4 = 4Nb6B4C3Ta6B4C3–0.6930.0043Ta7B4C4 + Ta3B4 = 4Ta6B4C3
      Nb7B4C4–0.632–0.0063Nb3B4 + 2C + 2Nb6C5 = 3Nb7B4C4Ta7B4C4–0.685–0.0173Ta3B4 + 4TaC = Ta7B4C4
      Nb5B6C –0.6970.0153Nb3B4 + C + 2Nb3B3C = 3Nb5B6C Ta5B6C –0.6970.024C + Ta5B6 = Ta5B6C
      Nb3B3C –0.685–0.0013Nb3B4 + C + 3Nb4B3C2 = 7Nb3B3C Ta3B3C –0.6990.0103Ta7B4C4 + 9Ta3B4 + 4C = 16Ta3B3C
      Nb7B6C3–0.6640.0005Nb3B3C + Nb4B3C2 = Nb7B6C3Ta7B6C3–0.6950.00085Ta7B4C4 + 7Ta3B4 + 4C = 8Ta7B6C3
      Nb4B3C2–0.648–0.0015Nb3B4 + 4C + 7Nb7B4C4 = 16Nb4B3C2Ta4B3C2–0.6840.0027Ta7B4C4 + 5Ta3B4 + 4C = 16Ta4B3C2
      Nb6B8C –0.6950.0192Nb3B4 + C = Nb6B8C Ta6B8C –0.6850.0342Ta3B4 + C = Ta6B8C
      Nb7B8C2–0.6830.0083Nb3B4 + 2C + 4Nb3B3C = 3Nb7B8C2Ta7B8C2–0.6860.020Ta7B4C4 + 7Ta3B4 + 4C = 4Ta7B8C2
      Nb8B8C3–0.6650.008C + 8Nb3B3C = 3Nb8B8C3Ta8B8C3–0.6840.012Ta7B4C4 + 3Ta3B4 + 2C = 2Ta8B8C3
      Nb9B8C4–0.6510.008C + 5Nb3B3C + 3Nb4B3C2 = 3Nb9B8C4Ta9B8C4–0.6750.0133Ta7B4C4 + 5Ta3B4 + 4C = 4Ta9B8C4
      Nb7B10C –0.6930.021C + 2Nb2B3 + Nb3B4 = Nb7B10C Ta7B10C –0.6770.030TaB2 + 2Ta3B4 + C = Ta7B10C
      Nb4B5C –0.6840.0112C + Nb3B3C + 3Nb3B4 = 3Nb4B5C Ta4B5C –0.6790.026Ta7B4C4 + 19Ta3B4 + 12C = 16Ta4B5C
      Nb9B10C3–0.6680.012C + 2Nb3B3C + Nb3B4 = Nb9B10C3Ta9B10C3–0.6770.0193Ta7B4C4 + 17Ta3B4 + 12C = 8Ta9B10C3
      Nb5B5C2–0.6550.011C + 5Nb3B3C = 3Nb5B5C2Ta5B5C2–0.6700.0185Ta7B4C4 + 15Ta3B4 + 12C = 16Ta5B5C2
    • Table 3.

      Elastic constants Cij, bulk modulus B, shear modulus G, Vickers hardness Hv of Nb-B-C and Ta-B-C ternary phases (in GPa).

      Nb-B-C和Ta-B-C三元相的弹性常数Cij、体模量B、剪切模量 G和维氏硬度Hv (单位: GPa)

      View table
      View in Article

      Table 3.

      Elastic constants Cij, bulk modulus B, shear modulus G, Vickers hardness Hv of Nb-B-C and Ta-B-C ternary phases (in GPa).

      Nb-B-C和Ta-B-C三元相的弹性常数Cij、体模量B、剪切模量 G和维氏硬度Hv (单位: GPa)

      结构弹性常数力学性能a硬度
      C11C22C33C44C55C66C12C13C23BGB/GHChenHTian
      注: a二元相力学性能数据来自Materials Project网站.
      Nb3B3C 544.3479.8522.8181.5171.9245.3170.9132.9162.2275.3189.71.4524.824.7
      Nb4B3C2551.5499.2548.5184.0175.1257.1183.2132.7157.8282.9195.81.4425.525.4
      Nb6B4C3533.3493.8548.1174.9161.3255.2175.4138.9151.7278.5189.51.4724.424.3
      Nb7B4C4535.9505.9526.4172.2161.3259.1184.0142.8152.6280.6188.31.4923.923.8
      Nb7B6C3553.1494.5563.2188.7179.6255.6176.4132.1157.7282.5198.91.4226.326.2
      Ta3B3C 569.6514.4563.5194.1180.0261.8187.1147.3173.9295.9200.81.4725.325.3
      Ta4B3C2581.1535.3602.1197.3185.1275.8200.3146.0170.2305.7209.01.4626.226.2
      Ta3BC2550.0547.7550.0159.8159.5292.1216.7160.0149.2299.6191.81.5622.722.9
      Ta6B4C3584.7539.6614.2203.0189.9279.9195.5168.0144.1305.9213.91.4327.427.3
      Ta7B4C4563.1547.5571.5183.6170.4281.4200.2162.0164.3303.9200.81.5124.424.5
      Ta7B6C3584.7540.0614.2203.0190.0280.0195.5168.0144.1305.9213.91.4327.427.3
      TaB23022001.5124.424.5
      NbB22871951.4724.824.8
      TaC3242151.5125.625.9
      NbC2391611.4821.621.4
      SiC2131871.1433.632.2
      Al2O32321471.5818.718.7
      TiN2591801.4424.324.0
    Tools

    Get Citation

    Copy Citation Text

    Qian-Ku Hu, Shuang-Hong Qin, Qing-Hua Wu, Dan-Dan Li, Bin Zhang, Wen-Feng Yuan, Li-Bo Wang, Ai-Guo Zhou. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides[J]. Acta Physica Sinica, 2020, 69(11): 116201-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 18, 2020

    Accepted: --

    Published Online: Dec. 2, 2020

    The Author Email:

    DOI:10.7498/aps.69.20200234

    Topics