Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0817002(2025)

Simulation Design and Optical Signal Optimization of Blood Oxygen Sensor Based on TracePro

Sizhe Ye1,2、*, Hongyi Yang1,2, En Ma1,2, and Fulin Lin1,2
Author Affiliations
  • 1Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian , China
  • 2Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen 361021, Fujian , China
  • show less
    Figures & Tables(25)
    Modeling of LED light source. (a) Mechanical structure; (b) spectral measurement result; (c) distribution of intensity; (d) distribution of irradiance
    Modeling of PD detector. (a) Mechanical structure; (b) spectral response curve; (c) angular response curve; (d) spectral-angular response contour
    Schematic diagram of skin tissue stratification modeling
    Schematic diagram of light propagation and absorption in skin tissues
    Schematic diagrams of the layout for each channel module. (a) Single-channel; (b) dual-channel; (c) four-channel; (d) eight-channel
    Schematic diagram of the center distance for the module
    Schematic diagrams of the window structures for the module. (a) Distributed window; (b) integrated window
    Schematic diagrams of light leakage paths. (a) Distributed window; (b) integrated window
    Schematic diagrams of the optical propagation paths for the blood oxygen module
    Simulated results under different distances for light source-detector
    Variation in luminous flux with distance for light source-detector
    Comparison of the total flux and average flux for modules with different channels at different detection distances. (a) Total flux; (b) average flux
    Comparison of detector detection efficiencies at different positions. (a) Detector grouping at each location; (b) comparison of detection efficiencies between detector groups
    Comparison of illuminance for modules with different channels. (a) Single-channel; (b) dual-channel; (c) four-channel; (d) eight-channel
    Schematic diagrams of light propagations in the tilted state of module
    Major construction features of Fresnel lens
    Distributions of spatial light modulated by different constant-angle Fresnel lenses. (a) 0°; (b) 10°; (c) 20°; (d) 30°; (e) 40°; (f) 50°; (g) 60°; (h) 70°; (i) 80°
    Major construction features of variable-angle Fresnel lens
    Distributions of spatial light modulated by variable-angle Fresnel lenses with different focals. (a) Planar window; (b) 100.0 mm; (c) 50.0 mm; (d) 30.0 mm; (e) 25.0 mm; (f) 20.0 mm; (g) 15.0 mm; (h) 10.0 mm; (i) 7.5 mm
    Illuminance of modules with different channels modulated by a variable-angle Fresnel lens. (a) Single-channel; (b) dual-channel; (c) four-channel; (d) eight-channel
    Comparison of the illumination uniformities and luminous fluxes of modules with different channels modulated by Fresnel lens or planar window
    • Table 1. Parameters of LED light source

      View table

      Table 1. Parameters of LED light source

      ParameterGreenRedNear infrared
      Centroid wavelength /nm530660940
      Radiant flux /mW141311
      Radiant intensity /(mW·sr-14.04.23.0
      Viewing angle /(°)120120120
      Chip size /(mm×mm)0.55×0.550.35×0.350.35×0.35
    • Table 2. Parameters of PD detector

      View table

      Table 2. Parameters of PD detector

      ParameterSymbolValue
      Spectral bandwidth /nmλ10%400‒1100
      Wavelength of max sensitivity /nmλS, max940
      Viewing angle /(°)φ130
      Radiant sensitive area /mm²A3.27
      Dimension of chip area /(mm×mm)L×W2.8×1.4
    • Table 3. Parameters of optical properties of human skin tissues

      View table

      Table 3. Parameters of optical properties of human skin tissues

      Biological tissueAbsorption propertyScatter property
      Refractive index (585 nm)Absorption coefficient /mm-1Wavelength /nmAnisotropy coefficientScatter coefficient /mm-1
      Skin epidermis1.3351.0005770.7812.000
      6330.7910.700
      Papillary dermis1.3700.2806330.8118.700
      Dermis with plexus superficials1.4000.2805770.7821.900
      6330.8219.200
      Reticular dermis1.3700.2806330.8118.700
      Dermis with plexus profundus1.4000.2805770.7822.500
      6330.8219.400
      Subcutaneous fat1.4400.08110640.751.396
    • Table 4. Measured flux of each detector for the eight-channel module under three conditions

      View table

      Table 4. Measured flux of each detector for the eight-channel module under three conditions

      PDParallel to skinRotate 10° around X axisRotate 10° around Y axis
      PD 10.01870.25300.2462
      PD 20.01880.18360.2436
      PD 30.03630.29450.2825
      PD 40.03940.29100.2303
      PD 50.02870.27130.2689
      PD 60.02850.28280.2324
      PD 70.02870.23770.2760
      PD 80.02650.23910.2358
    Tools

    Get Citation

    Copy Citation Text

    Sizhe Ye, Hongyi Yang, En Ma, Fulin Lin. Simulation Design and Optical Signal Optimization of Blood Oxygen Sensor Based on TracePro[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0817002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Aug. 19, 2024

    Accepted: Oct. 8, 2024

    Published Online: Mar. 21, 2025

    The Author Email: Sizhe Ye (yesizhe@fjirsm.ac.cn)

    DOI:10.3788/LOP241865

    CSTR:32186.14.LOP241865

    Topics