Laser & Optoelectronics Progress, Volume. 58, Issue 8, 0810020(2021)

A Method for Brain Tumor Segmentation Using Cascaded Modified U-Net

Jinghui Chu, Kailong Huang, and Wei Lü*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(29)

    [3] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]. //IEEE Transactions on Pattern Analysis and Machine Intelligence,, 640-651(2015).

    [4] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. //Navab N, Hornegger J, Wells W, et al. Medical Image Computing and Computer-Assisted Intervention Cham: Springer, 9351, 234-241(2015).

    [5] Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]. //2016 Fourth International Conference on 3D Vision (3DV), October 25-28, 2016, Stanford, CA, USA, 565-571(2016).

    [10] Chen L C, Zhu Y K, Papandreou G et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. //Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision-ECCV 2018. Cham: Springer, 11211, 833-851(2018).

    [12] Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization[C]. // Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 311-320(2018).

    [13] Malmi E, Parambath S, Peyrat J M et al. CaBS: a cascaded brain tumor segmentation approach[C]. //Proceedings MICCAI Brain, Tumor Segmentation (BRATS). [S.l.: s.n.], 42-47(2015).

    [15] Lafferty J, Mccallum A, Pereira F et al. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]. // Proceedings of 18th International Conference on International Conference on Machine Learning, June 28-July 1, 2001, Williamstown, MA, USA. [S. l.]: International Machine Learning Society, 282-289(2001).

    [16] Zheng S, Jayasumana S, Romera-Paredes B et al. Conditional random fields as recurrent neural networks[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 1529-1537(2015).

    [18] He K M, Zhang X Y, Ren S Q et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile, 1026-1034(2015).

    [22] Gibson E, Li W Q, Sudre C et al. NiftyNet: a deep-learning platform for medical imaging[J]. Computer Methods and Programs in Biomedicine, 158, 113-122(2018).

    [26] McKinley R, Meier R, Wiest R. Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation[C]. // Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 456-465(2018).

    [28] Mehta R, Arbel T. 3D U-net for brain tumour segmentation[C]. //Crimi A, Bakas S, Kuijf H, et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 11384, 254-266(2018).

    [29] Hua R, Huo Q, Gao Y Z et al. Multimodal brain tumor segmentation using cascaded V-nets[M]. //Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham: Springer, 49-60(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jinghui Chu, Kailong Huang, Wei Lü. A Method for Brain Tumor Segmentation Using Cascaded Modified U-Net[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810020

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 24, 2020

    Accepted: Sep. 20, 2020

    Published Online: Apr. 12, 2021

    The Author Email: Lü Wei (luwei@tju.edu.cn)

    DOI:10.3788/LOP202158.0810020

    Topics