Laser & Optoelectronics Progress, Volume. 59, Issue 4, 0410015(2022)

Improved Lightweight Semantic Segmentation Algorithm Based on DeepLabv3+ Network

Yan Yao, Likun Hu*, and Jun Guo
Author Affiliations
  • School of Electrical Engineering, Guangxi University, Nanning , Guangxi 530004, China
  • show less
    Figures & Tables(12)
    Improved DeepLabv3+network
    Depthwise separable convolution
    Squeeze and excitation module
    Comparison of normalization methods. (a) BN; (b) GN
    Segmentation results of proposed algorithm. (a) Input images; (b) ground truth; (c) segmentation results
    • Table 1. Experimental parameters

      View table

      Table 1. Experimental parameters

      Parameter nameParameter selection
      Enter picture size769×769
      Loss functionCross entropy
      OptimizerSGD
      Batch size16
      Iteration18500
    • Table 2. Comparison of Deeplabv3+ model performance of different backbone networks

      View table

      Table 2. Comparison of Deeplabv3+ model performance of different backbone networks

      Evaluation indexXceptionResNet-50MobileNetv3
      mIoU /%78.1879.2072.94
      Validating time /ms11323415
      Parameter quantity /MB78.5338.722.18
    • Table 3. Comparison of different convolution methods

      View table

      Table 3. Comparison of different convolution methods

      Convolution method in ASPPTraining time /hmIoU /%
      Standard convolution3.3968.50
      Depthwise separable convolution in ASPP2.5666.78
    • Table 4. Performance results for different modules on Cityscape

      View table

      Table 4. Performance results for different modules on Cityscape

      Depthwise separable convolution in ASPPSEGNmIoU /%
      68.50
      66.78
      71.23
      70.17
      72.94
    • Table 5. Performance results for different modules on Foggy Cityscape

      View table

      Table 5. Performance results for different modules on Foggy Cityscape

      Depthwise separable convolution in ASPPSEGNmIoU /%
      54.06
      53.42
      57.71
      56.31
      58.76
    • Table 6. Comparison of performance of different algorithms

      View table

      Table 6. Comparison of performance of different algorithms

      AlgorithmBackbone networkmIoU /%Parameter quantity /MB
      PSPNet14Paper source78.4284.75
      SegNet8Paper source57.9529.46
      DeepLabv3+Xception78.1878.53
      DeepLabv3+ResNet-5079.2038.72
      Proposed algorithmMobileNetv372.942.18
    • Table 7. Comparison of lightweight image semantic segmentation algorithms

      View table

      Table 7. Comparison of lightweight image semantic segmentation algorithms

      AlgorithmmIoU /%Parameter quantity /MB
      FSSNet2362.320.20
      Fast-SCNN2469.252.33
      ENet2560.430.37
      Proposed algorithm72.942.18
    Tools

    Get Citation

    Copy Citation Text

    Yan Yao, Likun Hu, Jun Guo. Improved Lightweight Semantic Segmentation Algorithm Based on DeepLabv3+ Network[J]. Laser & Optoelectronics Progress, 2022, 59(4): 0410015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Feb. 18, 2021

    Accepted: Apr. 14, 2021

    Published Online: Jan. 25, 2022

    The Author Email: Likun Hu (hlk3email@163.com)

    DOI:10.3788/LOP202259.0410015

    Topics