Laser & Optoelectronics Progress, Volume. 58, Issue 5, 0529001(2021)

Inversion Algorithm of Rainbow Signal Based on Local Minimum

Can Li, Lü Qimeng, Yingchun Wu, Xuecheng Wu*, Xiang Gao, and Kefa Cen
Author Affiliations
  • State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • show less
    References(23)

    [1] Roth N, Anders K, Frohn A. Simultaneous measurement of temperature and size of droplets in the micrometer range. Journal of Laser Applications, 2, 37-42(1990).

    [2] Saengkaew S, Charinpanitkul T, Vanisri H et al. Rainbow refractrometry on particles with radial refractive index gradients. Experiments in Fluids, 43, 595-601(2007).

    [3] Li H P, Rosebrock C D, Wriedt T et al. The effect of initial diameter on rainbow positions and temperature distributions of burning single-component n-Alkane droplets. Journal of Quantitative Spectroscopy and Radiative Transfer, 195, 164-175(2017).

    [4] Rosebrock C D, Shirinzadeh S, Soeken M et al. Time-resolved detection of diffusion limited temperature gradients inside single isolated burning droplets using Rainbow Refractometry. Combustion and Flame, 168, 255-269(2016).

    [5] Wu Y C, Promvongsa J, Saengkaew S et al. Phase rainbow refractometry for accurate droplet variation characterization. Optics Letters, 41, 4672-4675(2016).

    [6] Wu Y C, Crua C, Li H P et al. Simultaneous measurement of monocomponent droplet temperature/ refractive index, size and evaporation rate with phase rainbow refractometry‍. Journal of Quantitative Spectroscopy and Radiative Transfer, 214, 146-157(2018).

    [7] Wu Y C, Li H P, Wu X C et al. Change of evaporation rate of single monocomponent droplet with temperature using time-resolved phase rainbow refractometry. Proceedings of the Combustion Institute, 37, 3211-3218(2019).

    [8] Li C, Lv Q, Wu Y C et al. Measurement of transient evaporation of an ethanol droplet stream with phase rainbow refractometry and high-speed microscopic shadowgraphy. International Journal of Heat and Mass Transfer, 146, 118843(2020).

    [9] Wu X C, Jiang H Y, Wu Y C et al. One-dimensional rainbow thermometry system by using slit apertures. Optics Letters, 39, 638-641(2014).

    [10] Wu Y C, Promvongsa J, Wu X C et al. One-dimensional rainbow technique using Fourier domain filtering. Optics Express, 23, 30545-30556(2015).

    [11] Cao J Z, Li C, Wu Y C et al. Development and experimental test of compact rainbow refractometer. Laser & Optoelectronics Progress, 56, 101201(2019).

    [12] Song F H, Xu C L, Wang S M. Reversion algorithm for liquid column parameters with rainbow refractometry based on Debye theory. Acta Optica Sinica, 31, 1212006(2011).

    [13] van Beeck J P A J, Zimmer L, Riethmuller M L. Global rainbow thermometry for mean temperature and size measurement of spray droplets. Particle & Particle Systems Characterization, 18, 196-204(2001).

    [14] Wu Y C, Wu X C, Saengkaew S et al. Concentration and size measurements of sprays with global rainbow technique. Acta Physica Sinica, 62, 090703(2013).

    [15] Song F H, Li Z F. Reversion algorithm of global rainbow technique based on optimization process. Laser & Optoelectronics Progress, 53, 071203(2016).

    [16] Laven P. Simulation of rainbows, coronas and glories using Mie theory and the Debye series. Journal of Quantitative Spectroscopy and Radiative Transfer, 89, 257-269(2004).

    [17] Nussenzveig H M. High-frequency scattering by a transparent sphere. I. Direct reflection and transmission. Journal of Mathematical Physics, 10, 82-124(1969).

    [18] Nussenzveig H M. High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory. Journal of Mathematical Physics, 10, 125-176(1969).

    [19] Saengkaew S, Charinpanitkul T, Vanisri H et al. Rainbow refractrometry: on the validity domain of Airy's and Nussenzveig's theories. Optics Communications, 259, 7-13(2006).

    [20] Nocedal J, Wright S J. Numerical optimization. 2nd ed(2006).

    [21] Han S P. A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications, 22, 297-309(1977).

    [22] Powell M J D. A fast algorithm for nonlinearly constrained optimization calculations. //Watson G A. Numerical Analysis. Berlin, 630, 144-157(1978).

    [23] Wu X C, Jiang H Y, Cao K L et al. Self-calibrated global rainbow refractometry: a dual-wavelength approach. Chinese Optics Letters, 15, 042902(2017).

    Tools

    Get Citation

    Copy Citation Text

    Can Li, Lü Qimeng, Yingchun Wu, Xuecheng Wu, Xiang Gao, Kefa Cen. Inversion Algorithm of Rainbow Signal Based on Local Minimum[J]. Laser & Optoelectronics Progress, 2021, 58(5): 0529001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Scattering

    Received: Jun. 16, 2020

    Accepted: Jul. 9, 2020

    Published Online: Apr. 19, 2021

    The Author Email: Xuecheng Wu (wuxch@zju.edu.cn)

    DOI:10.3788/LOP202158.0529001

    Topics