Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0637004(2025)
Interpretable Deep Learning Image Restoration Algorithm with L2-Norm Prior
[13] Li H Y, Xu B Q, Zhang Z Y et al. Small object detection in remote sensing images based on global contextual information[J]. Acta Optica Sinica, 44, 2428004(2024).
[26] Wu F, Liao B B, Han Y H. Interpretability for deep learning[J]. Aero Weaponry, 26, 39-46(2019).
[27] Li L M, Hou M R, Chen K et al. Survey on interpretability research of deep learning[J]. Journal of Computer Applications, 42, 3639-3650(2022).
[28] Chen C, Chen J, Zhang H et al. Review on interpretability of deep learning[J]. Computer Science, 50, 52-63(2023).
[31] Alvarez-Melis D, Jaakkola T. Towards robust interpretability with self⁃explaining neural networks[C], 7786-7795(2018).
[33] Li H S, Zhang Y N, Zhang H C et al. Blind image deblurring based on sparse prior of dictionary pair[C], 3054-3057(2012).
[34] Wang Y T. Research on image blind deconvolution method based on sparsity and self-similarity[D](2018).
Get Citation
Copy Citation Text
Lijing Bu, Beini Yang, Guoqiang Dong, Zhengpeng Zhang, Yin Yang, Yujie Feng. Interpretable Deep Learning Image Restoration Algorithm with L2-Norm Prior[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0637004
Category: Digital Image Processing
Received: May. 23, 2024
Accepted: Jul. 29, 2024
Published Online: Mar. 5, 2025
The Author Email:
CSTR:32186.14.LOP241353