Acta Optica Sinica, Volume. 37, Issue 8, 0815001(2017)

Adaptive Feature Fusion Object Tracking Based on Circulant Structure with Kernel

Gaopeng Zhao*, Yupeng Shen, and Jianyu Wang
Author Affiliations
  • Department of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    Figures & Tables(10)
    Tracking results of CSK algorithm. (a) Illumination variation; (b) occlusion; (c) scale variation
    Tracking results of the proposed algorithm and CSK algorithm. (a) Fish; (b) car24; (c) suv
    Center location error comparison of the proposed algorithm and CSK algorithm. (a) Fish; (b) car24; (c) suv
    Tracking results of different tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
    Distance precision of tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
    Success rate of tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
    • Table 1. Characteristics of video sequences in the experiment

      View table

      Table 1. Characteristics of video sequences in the experiment

      SequenceCharacteristicSequenceCharacteristic
      Car24Illumination variationHuman8Illumination variation, scale variation
      FishIllumination variationJogging2Occlusion
      SuvOcclusionCar1Illumination variation, scale variation
      Bird2Occlusion, deformationWalking2Scale variation, occlusion
      Bolt2Deformation, background clutters
    • Table 2. Distance precision of different tracking algorithms

      View table

      Table 2. Distance precision of different tracking algorithms

      SequenceAlgorithm
      KCFSTRUCKTLDMILCTDSSTProposed algorithm
      Bird20.4740.5450.869¯0.6460.1010.4740.979
      Bolt20.0170.1090.0131.0000.6380.0200.993¯
      Human81.0000.195¯0.1870.1560.0781.0001.000
      Jogging20.1620.2540.856¯0.1820.1660.1851.000
      Car10.738¯0.3300.5910.2390.1411.0001.000
      Walking20.4380.966¯0.4240.4060.4321.0001.000
    • Table 3. Success rate of different tracking algorithms

      View table

      Table 3. Success rate of different tracking algorithms

      SequenceAlgorithm
      KCFSTRUCKTLDMILCTDSSTProposed algorithm
      Bird20.4740.5250.707¯0.5950.1010.4740.979
      Bolt20.0060.0060.0060.9650.4190.0100.686¯
      Human80.304¯0.1320.1320.1560.0071.0001.000
      Jogging20.1590.1620.1560.1620.1400.182¯0.996
      Car10.0530.0530.2930.0530.0070.604¯1.000
      Walking20.3780.434¯0.3380.3800.3841.0001.000
    • Table 4. Complexity analysisframe·s-1

      View table

      Table 4. Complexity analysisframe·s-1

      AlgorithmSequence
      Bird2Bolt2Human8JoggingCar1Walking2
      CSK51.4130.5139.181.1175.180.7
      DSST7.221.617.510.118.012.5
      Proposed algorithm20.039.034.028.749.630.9
    Tools

    Get Citation

    Copy Citation Text

    Gaopeng Zhao, Yupeng Shen, Jianyu Wang. Adaptive Feature Fusion Object Tracking Based on Circulant Structure with Kernel[J]. Acta Optica Sinica, 2017, 37(8): 0815001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 27, 2017

    Accepted: --

    Published Online: Sep. 7, 2018

    The Author Email: Gaopeng Zhao (zhaogaopeng@njust.edu.cn)

    DOI:10.3788/AOS201737.0815001

    Topics