Acta Optica Sinica, Volume. 37, Issue 8, 0815001(2017)
Adaptive Feature Fusion Object Tracking Based on Circulant Structure with Kernel
Fig. 1. Tracking results of CSK algorithm. (a) Illumination variation; (b) occlusion; (c) scale variation
Fig. 2. Tracking results of the proposed algorithm and CSK algorithm. (a) Fish; (b) car24; (c) suv
Fig. 3. Center location error comparison of the proposed algorithm and CSK algorithm. (a) Fish; (b) car24; (c) suv
Fig. 4. Tracking results of different tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
Fig. 5. Distance precision of tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
Fig. 6. Success rate of tracking algorithms. (a) Bird2; (b) bolt2; (c) human8; (d) jogging2; (e) car1; (f) walking2
|
|
|
|
Get Citation
Copy Citation Text
Gaopeng Zhao, Yupeng Shen, Jianyu Wang. Adaptive Feature Fusion Object Tracking Based on Circulant Structure with Kernel[J]. Acta Optica Sinica, 2017, 37(8): 0815001
Category: Machine Vision
Received: Feb. 27, 2017
Accepted: --
Published Online: Sep. 7, 2018
The Author Email: Gaopeng Zhao (zhaogaopeng@njust.edu.cn)