Acta Optica Sinica, Volume. 43, Issue 12, 1228009(2023)

SAR Change Detection Algorithm Based on Space-Frequency Dual-Domain Filtering

Yuqing Wu... Qing Xu*, Jingzhen Ma, Bowei Wen, Xinming Zhu and Tianming Zhao |Show fewer author(s)
Author Affiliations
  • Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, Henan, China
  • show less
    Figures & Tables(30)
    Process of SAR image change detection method based on dual-domain filtering
    Laplace airspace fusion scheme
    Laplace pyramid generation
    Flowchart of frequency domain filtering
    SAR images of Bern area. (a) Image taken in April 1999; (b) image taken in May 1999; (c) change reference map
    SAR images of Ottawa area. (a) Image taken in May 1997; (b) image taken in August 1997; (c) change reference map
    SAR images of San Francisco area. (a) Image taken in August 2003; (b) image taken in May 2004; (c) change reference map
    SAR images of Yellow River area. (a) Image taken in June 2008; (b) image taken in June 2009; (c) change reference map
    Results of change detection in Bern dataset using K-means clustering
    Results of change detection in Ottawa dataset using K-means clustering
    Results of change detection in San Francisco dataset using K-means clustering
    Results of change detection in Yellow River dataset using K-means clustering
    Results of change detection in Bern dataset using FCM clustering
    Results of change detection in Ottawa dataset using FCM clustering
    Results of change detection in San Francisco dataset using FCM clustering
    Results of change detection in Yellow River dataset using FCM clustering
    Kappa coefficients of Bern dataset in different clustering methods. (a) K-means clustering method; (b) FCM clustering method
    Comparison of results obtained by different algorithms
    Relationship between PCC and cutoff frequency. (a) K-means clustering method; (b) FCM clustering method
    • Table 1. Metrics of Bern dataset Based on K-means clustering

      View table

      Table 1. Metrics of Bern dataset Based on K-means clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr36032668699.2470.34
      Frequency Domain17220137399.5983.44
      Spatial Domain15230545799.5078.56
      L-S20420440899.5582.11
      Dual Domain12817630499.6686.39
    • Table 2. Metrics of Ottawa dataset based on K-means clustering

      View table

      Table 2. Metrics of Ottawa dataset based on K-means clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr20862741482795.2481.84
      Frequency Domain7122317302997.0288.32
      Spatial Domain11132576368996.3785.82
      L-S10332207324096.8187.64
      Dual Domain4181860227897.7691.25
    • Table 3. Metrics of San Francisco dataset based on K-means clustering

      View table

      Table 3. Metrics of San Francisco dataset based on K-means clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr1782408219096.6677.83
      Frequency Domain1474398187297.1480.55
      Spatial Domain1469411188097.1380.43
      L-S935761169697.4180.83
      Dual Domain395662105798.3987.52
    • Table 4. Metrics of Yellow River dataset based on K-means clustering

      View table

      Table 4. Metrics of Yellow River dataset based on K-means clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr1114454661661077.6435.29
      Frequency Domain844437981224283.5250.98
      Spatial Domain1022243381456080.4043.48
      L-S656659861255283.1043.90
      Dual Domain19842655463993.7578.50
    • Table 5. Metrics of Bern dataset based on FCM Clustering

      View table

      Table 5. Metrics of Bern dataset based on FCM Clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr43029572599.2069.94
      Frequency Domain18419337799.5883.41
      Spatial Domain15230545799.5078.56
      L-S23418541999.5482.00
      Dual Domain13117430599.6686.38
    • Table 6. Metrics of Ottawa dataset based on FCM clustering

      View table

      Table 6. Metrics of Ottawa dataset based on FCM clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr21062723482995.2481.85
      Frequency Domain6612420308196.9688.07
      Spatial Domain11132576368996.3785.82
      L-S10102245325596.7987.57
      Dual Domain3611996235797.6890.90
    • Table 7. Metrics of San Francisco dataset based on FCM clustering

      View table

      Table 7. Metrics of San Francisco dataset based on FCM clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr1745409215496.7178.12
      Frequency Domain1474398187497.1480.55
      Spatial Domain1469411188097.1380.43
      L-S2186439262595.9974.26
      Dual Domain928390131897.9985.61
    • Table 8. Metrics of Yellow River dataset based on FCM clustering

      View table

      Table 8. Metrics of Yellow River dataset based on FCM clustering

      MethodFPFNOEPCC /%Kappa /%
      Lr1264250911773376.1233.90
      Frequency Domain994234661342881.9248.60
      Spatial Domain1022243381456080.4043.48
      L-S1387238901770276.0937.41
      Dual Domain24693138560792.4574.02
    • Table 9. Kappa coefficient result

      View table

      Table 9. Kappa coefficient result

      MethodBernOttawaSan FranciscoYellow River
      K-means clustering70.3481.8477.8335.29
      FCM clustering69.9481.8578.1234.29
      PCAKM85.7588.1788.8078.37
      FLICM85.8289.4788.6271.18
      PCANet75.3793.1191.2282.43
      Dual Domain-K86.3991.2587.5278.50
      Dual Domain-F86.3890.9085.6174.02
    • Table 10. Kappa coefficients for K-means clustering at different fusion coefficients

      View table

      Table 10. Kappa coefficients for K-means clustering at different fusion coefficients

      Fusion coefficientBernOttawaSan FranciscoYellow River
      q=0.5 and w=0.583.3991.2587.5274.27
      q=0.8 and w=0.285.8290.0984.5368.11
    • Table 11. Kappa coefficients for FCM clustering at different fusion coefficients

      View table

      Table 11. Kappa coefficients for FCM clustering at different fusion coefficients

      Fusion coefficientBernOttawaSan FranciscoYellow River
      q=0.5 and w=0.586.3890.9085.6174.02
      q=0.8 and w=0.285.8689.7883.2565.95
    Tools

    Get Citation

    Copy Citation Text

    Yuqing Wu, Qing Xu, Jingzhen Ma, Bowei Wen, Xinming Zhu, Tianming Zhao. SAR Change Detection Algorithm Based on Space-Frequency Dual-Domain Filtering[J]. Acta Optica Sinica, 2023, 43(12): 1228009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 17, 2022

    Accepted: Dec. 7, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Qing Xu (xq2021ch@126.com)

    DOI:10.3788/AOS221834

    Topics