Spectroscopy and Spectral Analysis, Volume. 38, Issue 7, 2107(2018)
Coal Classification Based on Visible, Near-Infrared Spectroscopy and CNN-ELM Algorithm
[2] [2] Li A P, Li Z Y, Jia J P, et al. Spectroscopy Letters, 2016, 49(3): 217.
[3] [3] Becker J R, Skrodzki P J, Diwakar P K, et al. Spectroscopy Letters, 2016, 49(4): 276.
[5] [5] Niu X, Suen Y. Pattern Recognition, 2012, 45(4): 1318.
[6] [6] Huang G B, Zhu Q Y, Siew C K. Neurocomputing, 2006, 70(1): 489.
[7] [7] Xiao D, Le B T, Mao Y C, et al. Journal of Sensors, 2016, 2016(1): 1.
[8] [8] Cao J, Chen T, Fan J. Multimedia Tools and Applications, 2016, 75(5): 2839.
[10] [10] Eberhart R C, Kennedy J. IEEE International Conference on Neural Network. Perth, Australia, 1995, 4: 1942.
[12] [12] Li S Z, Yu B, Wu W. Neurocomputing, 2015, 151(Part 2): 565.
[13] [13] Zhang H G, Yin Y X, Zhang S. Neurocomputing, 2016, 174(Part A): 232.
[14] [14] Zhao L, Li X G, Wang J. IEEE Sensors Journal, 2016, 16(15): 6081.
[15] [15] Vapnik V, Cortes C. Machine Learning, 1995, 20(3): 273.
Get Citation
Copy Citation Text
LE Ba Tuan, XIAO Dong, MAO Ya-chun, SONG Liang, HE Da-kuo, LIU Shan-jun. Coal Classification Based on Visible, Near-Infrared Spectroscopy and CNN-ELM Algorithm[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2107
Received: Jul. 11, 2017
Accepted: --
Published Online: Jul. 24, 2018
The Author Email: LE Ba Tuan (lebatuan@qq.com)