Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 367(2025)
Simulation of backscattering properties of hollow ice crystals in cirrus clouds
[1] Baran A J. From the single-scattering properties of ice crystals to climate prediction: A way forward[J]. Atmospheric Research, 112, 45-69(2012).
[2] Liou K N. Influence of cirrus clouds on weather and climate processes: A global perspective[J]. Monthly Weather Review, 114, 1167-1199(1986).
[3] Lawson R P, Woods S, Jensen E et al. A review of ice particle shapes in cirrus formed in situ and in anvils[J]. Journal of Geophysical Research: Atmospheres, 124, 10049-10090(2019).
[4] Bailey M P, Hallett J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies[J]. Journal of the Atmospheric Sciences, 66, 2888-2899(2009).
[5] Yang P, Gao B C, Baum B A et al. Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands[J]. Journal of Geophysical Research: Atmospheres, 106, 17267-17291(2001).
[6] Mishchenko M I, Hovenier J W, Wiscombe W J et al. Overview of Scattering by Nonspherical Particles[M]. Light Scattering by Nonspherical Particles, 29-60(2000).
[7] Jacobowitz H. A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 11, 691-695(1971).
[8] Yee K E. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).
[9] Yang P, Liou K N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. Journal of the Optical Society of America A, 13, 2072-2085(1996).
[10] Sun W B, Loeb N G, Tanev S et al. Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium[J]. Applied Optics, 44, 1977-1983(2005).
[11] Macke A, Mishchenko M I, Muinonen K et al. Scattering of light by large nonspherical particles: Ray-tracing approximation versus T-matrix method[J]. Optics Letters, 20, 1934-1936(1995).
[12] Mishchenko M I, Sassen K. Depolarization of lidar returns by small ice crystals: An application to contrails[J]. Geophysical Research Letters, 25, 309-312(1998).
[13] Bi L, Yang P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 138, 17-35(2014).
[14] Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. The Astrophysical Journal, 186, 705-714(1973).
[15] Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. Journal of the Optical Society of America A, 11, 1491-1499(1994).
[16] Yurkin M A, Hoekstra A G. The discrete dipole approximation: An overview and recent developments[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 106, 558-589(2007).
[17] Cai Q, Liou K N. Polarized light scattering by hexagonal ice crystals: Theory[J]. Applied Optics, 21, 3569-3580(1982).
[18] Mishchenko M I, Macke A. Incorporation of physical optics effects and computation of the Legendre expansion for ray-tracing phase functions involving δ-function transmission[J]. Journal of Geophysical Research: Atmospheres, 103, 1799-1805(1998).
[19] Takano Y, Jayaweera K. Scattering phase matrix for hexagonal ice crystals computed from ray optics[J]. Applied Optics, 24, 3254-3263(1985).
[20] Borovoi A G, Kustova N V, Oppel U G. Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation[J]. Optical Engineering, 44, 071208(2005).
[21] Yang P, Liou K N. Geometric-optics–integral-equation method for light scattering by nonspherical ice crystals[J]. Applied Optics, 35, 6568-6584(1996).
[22] Yang P, Liou K N. Light scattering by hexagonal ice crystals: Solutions by a ray-by-ray integration algorithm[J]. Journal of the Optical Society of America A, 14, 2278-2289(1997).
[23] Borovoi A G, Grishin I A. Scattering matrices for large ice crystal particles[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 20, 2071-2080(2003).
[24] Borovoi A, Konoshonkin A, Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 181-189(2014).
[25] Konoshonkin A V, Kustova N V, Borovoi A G. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 164, 175-183(2015).
[26] Konoshonkin A, Borovoi A, Kustova N et al. Light scattering by ice crystals of cirrus clouds: From exact numerical methods to physical-optics approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 195, 132-140(2017).
[27] Bi L, Yang P, Kattawar G W et al. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 1492-1508(2011).
[28] Sun B Q, Yang P, Kattawar G W et al. Physical-geometric optics method for large size faceted particles[J]. Optics Express, 25, 24044-24060(2017).
[29] Konoshonkin A, Borovoi A, Kustova N et al. Power laws for backscattering by ice crystals of cirrus clouds[J]. Optics Express, 25, 22341-22346(2017).
[30] Okamoto H, Sato K, Borovoi A et al. Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar[J]. Optics Express, 27, 36587-36600(2019).
[31] Okamoto H, Sato K, Borovoi A et al. Wavelength dependence of ice cloud backscatter properties for space-borne polarization lidar applications[J]. Optics Express, 28, 29178-29191(2020).
[32] Schmitt C G, Heymsfield A J. On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus[J]. Journal of the Atmospheric Sciences, 64, 4514-4519(2007).
[33] Zhu X H, Wang Z Z, Konoshonkin A et al. Backscattering properties of randomly oriented hexagonal hollow columns for lidar application[J]. Optics Express, 31, 35257-35271(2023).
[34] Zhu X H, Wang Z Z, Liu D et al. The first global insight of cirrus clouds characterized by hollow ice crystals from space-borne lidar[J]. Geophysical Research Letters, 51, e2024GL109852(2024).
[35] Del Guasta M. Simulation of LIDAR returns from pristine and deformed hexagonal ice prisms in cold cirrus by means of "face tracing"[J]. Journal of Geophysical Research: Atmospheres, 106, 12589-12602(2001).
[36] Timofeev D N, Konoshonkin A V, Kustova N V. Modified beam-splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles[J]. Atmospheric and Oceanic Optics, 31, 642-649(2018).
[37] Kustova N, Konoshonkin A, Kokhanenko G et al. Lidar backscatter simulation for angular scanning of cirrus clouds with quasi-horizontally oriented ice crystals[J]. Optics Letters, 47, 3648-3651(2022).
[38] Konoshonkin A, Borovoi A, Kustova N et al[M]. Light Scattering by Atmospheric Ice Crystals Within the Physical Optics Approximation, 382(2022).
[39] Kustova N, Konoshonkin A, Shishko V et al. Depolarization ratio for randomly oriented ice crystals of cirrus clouds[J]. Atmosphere, 13, 1551(2022).
[40] Tai C T[M]. Dyadic Green Functions in Electromagnetic Theory(1994).
[41] Mishchenko M I, Travis L D, Lacis A A. K[M]. Scattering, Absorption, and Emission of Light by Small Particles, U(2002).
[42] Franz W. Zur formulierung des huygensschen prinzips[J]. Zeitschrift Für Naturforschung A, 3, 500-506(1948).
[43] Karczewski B, Wolf E. Comparison of three theories of electromagnetic diffraction at an aperture* part II: The far field[J]. Journal of the Optical Society of America, 56, 1214-1219(1966).
[44] Konoshonkin A V, Kustova N V, Borovoi A G et al. Light scattering by ice crystals of cirrus clouds: Comparison of the physical optics methods[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 12-23(2016).
[45] Nieto-Vesperinas M[M]. Scattering and Diffraction in Physical Optics(2006).
[46] Borovoi A, Konoshonkin A, Kustova N. Backscattering reciprocity for large particles[J]. Optics Letters, 38, 1485-1487(2013).
[47] Chiruta M, Wang P K. The capacitance of solid and hollow hexagonal ice columns[J]. Geophysical Research Letters, 32, L05803(2005).
[48] Yang P, Zhang Z B, Kattawar G W et al. Effect of cavities on the optical properties of bullet rosettes: Implications for active and passive remote sensing of ice cloud properties[J]. Journal of Applied Meteorology and Climatology, 47, 2311-2330(2008).
[49] Takano Y, Liou K N. Radiative transfer in cirrus clouds. part III: Light scattering by irregular ice crystals[J]. Journal of the Atmospheric Sciences, 52, 818-837(1995).
[50] Yang P, Bi L, Baum B A et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journal of the Atmospheric Sciences, 70, 330-347(2013).
[51] Mitchell D L, Arnott W P. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. part II: Dependence of absorption and extinction on ice crystal morphology[J]. Journal of the Atmospheric Sciences, 51, 817-832(1994).
[52] Bi L, Yang P. Improved ice particle optical property simulations in the ultraviolet to far-infrared regime[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 189, 228-237(2017).
[53] Noel V, Ledanois G, Chepfer H et al. Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space[J]. Applied Optics, 40, 4365-4375(2001).
[54] Hu Y X, Winker D, Vaughan M et al. CALIPSO/CALIOP cloud phase discrimination algorithm[J]. Journal of Atmospheric and Oceanic Technology, 26, 2293-2309(2009).
[55] Wehr T, Kubota T, Tzeremes G et al. The EarthCARE mission–science and system overview[J]. Atmospheric Measurement Techniques, 16, 3581-3608(2023).
[56] Zha C X, Bu L B, Li Z et al. Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: Retrieval and validation[J]. Atmospheric Measurement Techniques, 17, 4425-4443(2024).
[57] Hu Y X. Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters, 34, L11812(2007).
[58] Kokhanenko G P, Balin Y S, Klemasheva M G et al. Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the ice clouds[J]. Atmospheric Measurement Techniques, 13, 1113-1127(2020).
[59] Borovoi A G, Konoshonkin A V, Kustova N V et al. Contribution of corner reflections from oriented ice crystals to backscattering and depolarization characteristics for off-zenith lidar profiling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 212, 88-96(2018).
[60] Noel V, Roy G, Bissonnette L et al. Analysis of lidar measurements of ice clouds at multiple incidence angles[J]. Geophysical Research Letters, 29, 52-4(2002).
[61] Noel V, Sassen K. Study of planar ice crystal orientations in ice clouds from scanning polarization lidar observations[J]. Journal of Applied Meteorology, 44, 653-664(2005).
[62] Saito M, Yang P. Generalization of atmospheric nonspherical particle size: Interconversions of size distributions and optical equivalence[J]. Journal of the Atmospheric Sciences, 79, 3333-3349(2022).
[63] Okamoto H, Iwasaki S, Yasui M et al. An algorithm for retrieval of cloud microphysics using 95-GHz cloud radar and lidar[J]. Journal of Geophysical Research: Atmospheres, 108, 4226(2003).
[64] Stephens G L, Tsay S C, Stackhouse P W et al. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback[J]. Journal of the Atmospheric Sciences, 47, 1742-1754(1990).
Get Citation
Copy Citation Text
Xuanhao ZHU, Dong LIU. Simulation of backscattering properties of hollow ice crystals in cirrus clouds[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 367
Category: "Advanced technology of lidar and its application in atmospheric environment" Albun
Received: Nov. 8, 2024
Accepted: --
Published Online: Jun. 9, 2025
The Author Email: Dong LIU (dliu@aiofm.cas.cn)