Journal of Synthetic Crystals, Volume. 53, Issue 4, 730(2024)

Theoretical Study on Design and Hydrogen Storage Properties of High-Valence Boron-Phosphorous Based COFs

WANG Yaodong, LI Xiaodong*, YANG Penghui, ZHANG Huidong, LIU Xiuying, and YU Jingxin
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] XIA L Z, BO Z Y, LIU Q, et al. Li-doped and functionalized metal-organic framework-519 for enhancing hydrogen storage: a computational study[J]. Computational Materials Science, 2019, 166: 179-186.

    [2] [2] WANG S N, ZHANG Y Z, BAI J Q, et al. Research progress of alkali metal-based metal-organic frameworks[J]. Journal of Beijing University of Technology, 2019, 45(2): 191-208 (in Chinese).

    [3] [3] HUNT J R, DOONAN C J, LEVANGIE J D, et al. Reticular synthesis of covalent organic borosilicate frameworks[J]. Journal of the American Chemical Society, 2008, 130(36): 11872-11873.

    [4] [4] WANG T, GUO H, YANG W, et al. New material for gas adsorption and storage: development and application of COFs[J]. New Chemical Materials, 2017, 45(10): 4-7 (in Chinese).

    [5] [5] KLONTZAS E, TYLIANAKIS E, FROUDAKIS G E. Designing 3D COFs with enhanced hydrogen storage capacity[J]. Nano Letters, 2010, 10(2): 452-454.

    [6] [6] ZHAO Y C, ZHANG L M, WANG T, et al. Microporous organic polymers with acetal linkages: synthesis, characterization, and gas sorption properties[J]. Polymer Chemistry, 2014, 5(2): 614-621.

    [7] [7] KALIDINDI S B, OH H, HIRSCHER M, et al. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material[J]. Chemistry-A European Journal, 2012, 18(35): 10848-10856.

    [8] [8] GROPP C, MA T, HANIKEL N, et al. Design of higher valency in covalent organic frameworks[J]. Science, 2020, 370: eabd6406.

    [9] [9] GONG C T, WANG H, SHENG G A, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation[J]. Angewandte Chemie International Edition, 2022, 61(32): e202204899.

    [10] [10] WU M M, SHAN Z, WANG J J, et al. Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production[J]. Chemical Engineering Journal, 2023, 454: 140121.

    [11] [11] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.

    [12] [12] MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.

    [13] [13] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.

    [14] [14] MAYO S L, OLAFSON B D, GODDARD W A. DREIDING: a generic force field for molecular simulations[J]. The Journal of Physical Chemistry, 1990, 94(26): 8897-8909.

    [15] [15] DUBBELDAM D, SNURR R Q. Recent developments in the molecular modeling of diffusion in nanoporous materials[J]. Molecular Simulation, 2007, 33(4/5): 305-325.

    [16] [16] DUBBELDAM D, TORRES-KNOOP A, WALTON K S. On the inner workings of Monte Carlo codes[J]. Molecular Simulation, 2013, 39(14/15): 1253-1292.

    [17] [17] PROF J E. Lennard-Jones[J]. Nature, 1932, 130(3276): 232-233.

    [18] [18] YUAN J P, LIU X Y, LI X D, et al. Molecular simulation for adsorption and separation of CH4/H2 in zeolites[J]. Acta Physica Sinica, 2021, 70(15): 156801 (in Chinese).

    [19] [19] YUAN F. Theoretical simulation of adsorption properties of carbon dioxide in functionalized 3D-COF and defective Uio-66[D]. Changchun: Northeast Normal University, 2020 (in Chinese).

    [20] [20] SNURR R Q, BELL A T, THEODOROU D N. Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions[J]. The Journal of Physical Chemistry, 1993, 97(51): 13742-13752.

    [21] [21] LAN J H. Simulation synthesis of nanostructured adsorbents—application of multiscale computational simulation method[D]. Beijing: Beijing University of Chemical Technology, 2009 (in Chinese).

    [22] [22] ONGARI D, YAKUTOVICH A V, TALIRZ L, et al. Building a consistent and reproducible database for adsorption evaluation in covalent-organic frameworks[J]. ACS Central Science, 2019, 5(10): 1663-1675.

    [23] [23] PINHEIRO M, MARTIN R L, RYCROFT C H, et al. Characterization and comparison of pore landscapes in crystalline porous materials[J]. Journal of Molecular Graphics & Modelling, 2013, 44: 208-219.

    [24] [24] LUIS M R, BEREND S, MACIEJ H. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials[J]. Journal of Chemical Information and Modeling, 2012, 52(2): 308-18.

    [25] [25] WILLEMS T F, RYCROFT C H, KAZI M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials, 2012, 149(1): 134-141.

    [26] [26] FROST H, DUREN T, SNURR R Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks[J]. Journal of Physical Chemistry B, 2006, 110(19):9565-9570.

    [27] [27] LI X D, FENG S Q, GUO F, et al. Predicting 1, 3, 5, 7-tetrakis(4-aminophenyl) adamantine based covalent-organic frameworks as hydrogen storage materials[J]. RSC Advances, 2016, 6(26): 21517-21525.

    [28] [28] LIU X Y, YU J X, XIAO D L, et al. Monte Carlo simulation study of H2 adsorption on two-dimensional covalent organic skeleton[J]. Journal of Atomic and Molecular Physics. 2015, 32(2): 296-303(in Chinese).

    [29] [29] LIU X Y, WANG S J. Application of hydrogen overflow in hydrogen storage properties of porous materials[J]. New Chemical Materials. 2012, 40(6): 118-120(in Chinese).

    [30] [30] ZENG Y P, JU S G, XING W H, et al. Computer simulation of the adsorption of thiophene/benzene mixtures on MFI and MOR[J]. Separation and Purification Technology, 2007, 55(1): 82-90.

    [31] [31] KLONTZAS E, MAVRANDONAKIS A, TYLIANAKIS E, et al. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms[J]. Nano Letters, 2008, 8(6): 1572-1576.

    [32] [32] YUAN J P, LIU X Y, LI X D, et al. Computer simulations for the adsorption and separation of CH4/H2/CO2/N2 gases by hybrid ultramicroporous materials[J]. Materials Today Communications, 2021, 26: 101987.

    [33] [33] XIANG Z H, CAO D P. Porous covalent-organic materials: synthesis, clean energy application and design[J]. Journal of Materials Chemistry A, 2013, 1(8): 2691-2718.

    [34] [34] LI X D, ZANG H P, WANG J T, et al. Design of tetraphenyl silsesquioxane based covalent-organic frameworks as hydrogen storage materials[J]. Journal of Materials Chemistry A, 2014, 2(43): 18554-18561.

    Tools

    Get Citation

    Copy Citation Text

    WANG Yaodong, LI Xiaodong, YANG Penghui, ZHANG Huidong, LIU Xiuying, YU Jingxin. Theoretical Study on Design and Hydrogen Storage Properties of High-Valence Boron-Phosphorous Based COFs[J]. Journal of Synthetic Crystals, 2024, 53(4): 730

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 13, 2023

    Accepted: --

    Published Online: Aug. 22, 2024

    The Author Email: Xiaodong LI (xiaodongli@haut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics