Laser Technology, Volume. 46, Issue 2, 163(2022)
Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser
[1] [1] NAKATA K, FUJISHIMA A. TiO2 photocatalysis: Design and applications[J]. Photochem Photobiol, 2012, 13(3): 169-189.
[2] [2] OHTANI B. Photocatalysis A to Z: What we know and what we do not know in a scientific sense[J]. Photochem Photobiol, 2010, 11(4): 157-178.
[3] [3] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis, 2012, B125(21): 331-349.
[4] [4] TONG A Y C, BRAUND R, WARREN D S, et al. TiO2-assisted photodegradation of pharmaceuticals—a review[J]. Central European Journal of Chemistry, 2012, 10(4): 989-1027.
[5] [5] NADEEM R, WASEEM R, HAJERA G, et al. Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye[J]. Journal of Cleaner Production, 2020, 254(1): 120031.
[6] [6] VO D Q, KIM E J, KIM S W. Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids[J]. Journal of Colloid and Interface Science, 2009, 337(1): 75-80.
[7] [7] MALLAKPOUR S, NIKKHOO E. Surface modification of nano-TiO2 with trimellity limido-amino acid-based diacids for preventing aggregation of nanoparticles[J]. Advanced Powder Technology, 2014, 25(1): 348-353.
[8] [8] TORRES D G, ZU'IGA R C I, MAYN H S A, et al. Optical and structural properties of the sol-gel-prepared ZnO thin films and their effect on the photocatalytic activity[J]. Solar Energy Materials & Solar Cells, 2009, 93(1): 55-59.
[9] [9] XU Y Y, ZHANG M C, ZHANG M, et al. Controllable hydrothermal synthesis, opticaland photocatalytic properties of TiO2 nanostructures[J]. Applied Surface Science, 2014, 315(1): 299-306.
[10] [10] LIU W W, LU H, ZHANG M, et al. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells[J]. Applied Surface Science, 2015, 347(30): 214-223.
[11] [11] CHEN X B, BURDA C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society, 2008, 130(15): 5018-5019.
[12] [12] HUANG T, LU J L, XIAO R Sh, et al. Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtose-cond laser structured titanium substrate[J]. Applied Surface Science, 2017, 403(1): 584-589.
[13] [13] GE M Zh, CAO Ch Y, LI Sh H, et al. In situ plasmonic Ag nano-particles anchored TiO2nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting[J]. Nanoscale, 2016, 8(9): 5226-5234.
[14] [14] WU L, LI F, XU Y Y, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation[J]. Applied Catalysis, 2015, B164: 217-224.
[15] [15] JANG M H, AGAREAL R, NUKALA P, et al. Observing oxygen vacancy driven electroforming in Pt-TiO2-Pt device via strong metal support interaction[J]. Nano Letters, 2016, 16(4): 2139-2144.
[16] [16] LIU Y, WANG W, XU X M, et al. Recent advances in anion-doped metal oxides for catalytic applications[J]. Journal of Materials Chemistry, 2019, A7(13): 7280-7300.
[17] [17] SHEN J, LI Q M, WANG B Ch, et al. Comparison of surface-enhanced Raman spectroscopy of traditional Chinese medicine solution induced by two substrates[J]. Laser Technology, 2019, 43(3): 427-431 (in Chinese).
[18] [18] SALTER P S, BOOTH M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8: 110.
[19] [19] WEI D Zh, WANG Ch W, XU X Y, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 2019, 10(1): 4193-4200.
[20] [20] YIN D, FENG J, MA R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 2016, 7: 11573.
[21] [21] WU D, CHEN Q D, NIU L G, et al. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices[J]. Lab on a Chip, 2009, 9(16): 2391-2394.
[22] [22] ZHANG Ch, WANG G, LIU Z F, et al. The effects of laser micromachining on surface morphology and wettability of Ti6Al4V[J]. Laser Technology, 2021, 45(1): 31-36(in Chinese).
[23] [23] HOU J G, JIAO Sh Q, ZHU H M, et al. Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 2011, 184(1): 154-158.
Get Citation
Copy Citation Text
LI Yue, WANG Yan. Photocatalytic performance of Ag-TiO2 micro/nanostructures fabricated by femtosecond laser[J]. Laser Technology, 2022, 46(2): 163
Category:
Received: Feb. 10, 2021
Accepted: --
Published Online: Mar. 8, 2022
The Author Email: