Laser & Optoelectronics Progress, Volume. 58, Issue 16, 1615002(2021)

Multi-Task Learning Tracking Method Based on the Similarity of Dynamic Samples

Zaifeng Shi1、*, Cheng Sun1、**, Qingjie Cao2, Zhe Wang1, and Qiangqiang Fan1
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2School of Mathematical Sciences, Tianjin Normal University, Tianjin 300072, China
  • show less
    Figures & Tables(8)
    Flow chart of the tracking method
    Tracking results under different tz values
    Testing results of the OTB-2015 dataset. (a) Precision; (b) success rate
    Tracking results of four video sequences. (a) Bird1; (b) Box; (c) Girl2; (d) Matrix
    • Table 1. Implementation flow of the tracking method

      View table

      Table 1. Implementation flow of the tracking method

      Algorithm 1: Proposed tracking method
      Input: Initial target position v1, pretrained local tracker.
      Output: Estimated target position vq
      1: Initial training the local tracker by the first frame, set number of consecutive failures Pcf=0.
      2: for q =2:m
      3: if Pcfr then locally draw candidate regions of target
      4: else globally draw candidate regions of target
      5: Get the tracking result and confidence score using local tracker
      6: if (con > 0 and scos>Hcos and q>h) or (con>0 and qh) then
      Pcf =0, collect new short-term and long-term samples
      7: else Pcf=Pcf +1
      8: if (q % b≠0) then update local tracker using Eq. (4)
      9: if (q % b==0) then update local tracker using Eq. (6)
    • Table 2. Results of ablation experiments

      View table

      Table 2. Results of ablation experiments

      TrackerDetection of lossMulti-task learningFast re-detectionPrecisionSuccess rate
      Baseline0.90160.6677
      Method 10.89860.6722
      Method 20.90610.6788
      Method 30.90320.6758
      Method 40.90750.6812
    • Table 3. Tracking precision of 11 challengeable attributes

      View table

      Table 3. Tracking precision of 11 challengeable attributes

      TrackerIVSVOCCDEFMBFMIPROPROVBCLR
      Proposed0.9090.8890.8580.8760.8540.8770.9070.8980.8380.9370.937
      MDNet0.9070.8740.8280.8660.8580.8720.8980.8830.8330.9070.945
      SiamRPN0.8590.8380.7800.8260.8160.7890.8540.8510.7250.7990.978
      SRDCF0.7920.7450.7340.7350.7650.7680.7450.7410.5930.7750.760
      SiamFC0.7360.7360.7230.6910.7070.7440.7430.7580.6720.6920.900
      Staple0.7830.7260.7280.7520.6980.7080.7680.7370.6640.7490.690
    • Table 4. Testing result of the VOT-2016 dataset

      View table

      Table 4. Testing result of the VOT-2016 dataset

      TrackerC-COTStapleMDNetSiamFCSRDCFProposed
      Accuracy0.5390.5440.5410.5320.5350.545
      Robustness0.2380.3780.3370.4610.4190.317
      AO0.4690.3880.4570.3990.3970.482
    Tools

    Get Citation

    Copy Citation Text

    Zaifeng Shi, Cheng Sun, Qingjie Cao, Zhe Wang, Qiangqiang Fan. Multi-Task Learning Tracking Method Based on the Similarity of Dynamic Samples[J]. Laser & Optoelectronics Progress, 2021, 58(16): 1615002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Oct. 22, 2020

    Accepted: Dec. 8, 2020

    Published Online: Aug. 19, 2021

    The Author Email: Zaifeng Shi (shizaifeng@tju.edu.cn), Cheng Sun (suncheng@tju.edu.cn)

    DOI:10.3788/LOP202158.1615002

    Topics