Laser & Optoelectronics Progress, Volume. 61, Issue 13, 1306001(2024)

Resource Optimization Algorithm Based on Vertical Federated Learning in VLC/RF Hybrid Systems

Zhongtian Du1, Wuwei Huang2, and Yang Yang2、*
Author Affiliations
  • 1Science and Technology Innovation Department of China Telecom Digital Intelligence Technology Co., Ltd., Beijing 100035, China
  • 2School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    Figures & Tables(10)
    Vertical federated learning architecture based on VLC/RF hybrid system
    MLP Structure
    Comparison of training loss in different algorithms
    Comparison of model accuracy in different algorithms
    BER comparison of different algorithms
    Comparison of training loss using different channel estimation algorithms
    Comparison of model accuracy using different channel estimation algorithms
    • Table 1. Parameter of MLP

      View table

      Table 1. Parameter of MLP

      ParameterValue
      Number of inputs2
      Number of hidden layers1
      Number of neurons512
      Iteration rounds200
      Training algorithmLevenberg-Marquardt
      Activation functionTanSig
    • Table 2. VFL-VLC/RF algorithm

      View table

      Table 2. VFL-VLC/RF algorithm

      Input

      Packet error rate per user nqn(rnU,Pn)

      Calculate energy consumption per user nEnP

      Transmission energy consumption per user nEnM

      Output

      Transmission power per user,Pn*

      Selected user collection,S

      1Optimizing PER during transmission using MLP based channel estimation algorithm,qnMLP(rnU,Pn)qn(rnU,Pn)
      2Obtain the optimal transmission power for each user in uplink RB based on Eq. (15)Pn*
      3Using the definition of weights in bipartite graph matching problems Eq. (18) and the Kuhn-Munkres algorithm to solve optimization problems Eq. (17)
      4Process of longitudinal federated learning using the optimal user selection set S and the optimal transmission power vector P*
    • Table 3. Simulation parameters

      View table

      Table 3. Simulation parameters

      ParameterValue
      Transmission optical power of each VLC AP,Pv /W9
      Modulation bandwidth of LED lights,B /MHz40
      Physical area of PD,Ap /cm21
      Half intensity radiation angle,θ1/2 /(°)60
      Optical filter gain,Ts(θ)1.0
      FoV of receiver,ΘF /(°)90
      Refractivity,n1.5
      Photoelectric conversion efficiency,γ /(A/W)0.53
      Noise power spectral density,N0VLCN0RF /(A2/Hz)10-21
      RF total bandwidth,BR /MHz20
      Transmission power of BS,PB /W1
      Total number of users,N50
      Delay requirement,Tround /s2.5
      Energy consumption requirements,γnE /J2
      Energy consumption coefficient,α2×10-28
      User update size,s /Mb1
    Tools

    Get Citation

    Copy Citation Text

    Zhongtian Du, Wuwei Huang, Yang Yang. Resource Optimization Algorithm Based on Vertical Federated Learning in VLC/RF Hybrid Systems[J]. Laser & Optoelectronics Progress, 2024, 61(13): 1306001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Sep. 5, 2023

    Accepted: Nov. 14, 2023

    Published Online: Jul. 17, 2024

    The Author Email: Yang Yang (yangyang01@bupt.edu.cn)

    DOI:10.3788/LOP232054

    CSTR:32186.14.LOP232054

    Topics