Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1981(2025)
Strategy for Enhancing the Quality of CdMgTe Single Crystals for Room-Temperature Radiation Detectors
[1] [1] HOSSAIN A, YAKIMOVICH V, BOLOTNIKOV A E, et al. Development of Cadmium Magnesium Telluride (Cd1−xMgxTe) for room temperature X- and gamma-ray detectors[J]. J Cryst Growth, 2013, 379: 34–40.
[2] [2] YU P F, JIANG B R, CHEN Y R, et al. Growth and characterization of room temperature radiation detection material Cd0.95Mg0.05Te[J]. J Cryst Growth, 2020, 543: 125719.
[3] [3] XU C, SHENG F F, YANG J R. Annealing of CdZnTe materials to reduce inclusion defects[J]. J Cryst Growth, 2016, 451: 126–131.
[4] [4] YU P F, JIE W Q, WANG T. Detector-grade CdZnTe: In crystals obtained by annealing[J]. J Mater Sci, 2011, 46(11): 3749–3752.
[5] [5] BUGAR M, BELAS E, GRILL R, et al. Inclusions elimination and resistivity restoration of CdTe: Cl crystals by two-step annealing[J]. IEEE Trans Nucl Sci, 2011, 58(4): 1942–1948.
[6] [6] ZHOU Y, JIE W, HE Y, et al. Migration of Te inclusions within CdZnTe crystals during Cd/Zn atmospheric annealing process[J]. Funct Mater, 2014, 7: 7135‒7138.
[7] [7] YANG G, JIE W Q, ZHANG Q Y. Photoluminescence investigation of CdZnTe: In single crystals annealed in CdZn vapors[J]. J Mater Res, 2006, 21(7): 1807–1809.
[8] [8] HUANG Z, WU S Y, CHEN B S, et al. Tailoring the defects and resistivity in CdZnTe single crystalviaone-step annealing with CdTe compound[J]. Vacuum, 2023, 217: 112519.
[9] [9] YU P F, XU Y D, LUAN L J, et al. Quality improvement of CdMnTe: In single crystals by an effective post-growth annealing[J]. J Cryst Growth, 2016, 451: 194–199.
[10] [10] YU P F, CHEN Y R, SONG J, et al. Study of optical properties of high-resistivity CdMnTe: In single crystals before and after H2 atmosphere annealing[J]. Mater Sci Eng B, 2019, 246: 120–126.
[11] [11] ROY U, BOLOTNIKOV A, CAMARDA G, et al. Compositional homogeneity and X-ray topographic analyses of CdTexSe1–x grown by the vertical Bridgman technique[J]. J Cryst Growth, 2015, 411: 34–37.
[12] [12] KLEPPINGER J W, CHAUDHURI S K, NAG R, et al. Assessment of deep levels with selenium concentration in Cd1–xZnxTe1–ySey room temperature detector materials[J]. 2023, 123(6): 062104.
[13] [13] ROY U N, CAMARDA G S, CUI Y G, et al. Optimization of selenium in CdZnTeSe quaternary compound for radiation detector applications[J]. 2021, 118(15): 152101.
[14] [14] ROY U N, CAMARDA G S, CUI Y G, et al. Evaluation of CdZnTeSe as a high-quality gamma-ray spectroscopic material with better compositional homogeneity and reduced defects[J]. Sci Rep, 2019, 9(1): 7303.
[15] [15] KIM K, KIM Y, FRANC J, et al. Enhanced hole mobility-lifetime product in selenium-added CdTe compounds[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2023, 1053: 168363.
[16] [16] HWANG S, YU H, BOLOTNIKOV A E, et al. Anomalous Te inclusion size and distribution in CdZnTeSe[J]. IEEE Trans Nucl Sci, 2019, 66(11): 2329–2332.
[17] [17] ROY U N, BOLOTNIKOV A E, CAMARDA G S, et al. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method[J]. 2015, 3(2): 026102.
[18] [18] MARTNEZ hERRAIZ L, BRAA A F, PLAZA J L. Vertical Gradient Freeze Growth of two inches Cd1−xZnxTe1−ySey ingots with different Se content[J]. J Cryst Growth, 2021, 573: 126291.
[19] [19] ROY U N, CAMARDA G S, CUI Y, et al. Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications[J]. Sci Rep, 2019, 9(1): 1620.
[20] [20] NAG R, CHAUDHURI S K, KLEPPINGER J W, et al. Characterization of vertical Bridgman grown Cd0.9Zn0.1Te0.97Se0.03 single crystal for room-temperature radiation detection[J]. J Mater Sci Mater Electron, 2021, 32(22): 26740–26749.
[21] [21] KIM K, KIM Y, FRANC J, et al. Enhanced hole mobility-lifetime product in selenium-added CdTe compounds[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2023, 1053: 168363.
[22] [22] YU P F, JIE W Q, WANG T. Detector-grade CdZnTe: In crystals obtained by annealing[J]. J Mater Sci, 2011, 46(11): 3749–3752.
[23] [23] YU P F, LUAN L J, DU Y Y, et al. Investigation of Te atmosphere annealing on the properties of detector-grade CdMnTe: In single crystals[J]. J Cryst Growth, 2015, 430: 103–107.
[24] [24] YU P F, JIE W Q. Study on Te atmosphere annealing of high-resistivity CdZnTe: In single crystals[J]. J Cryst Growth, 2013, 383: 126–130.
[25] [25] CORREGIDOR V, DIGUEZ E, CASTAO J L, et al. Correlation of resistivity with zinc content in a vapor grown (Cd, Zn)Te: Se[J]. Appl Phys Lett, 2002, 81(27): 5153–5155.
[26] [26] MYCIELSKI A, KOCHANOWSKA D, WITKOWSKA-BARAN M, et al. Semiconductor crystals based on CdTe with Se–Some structural and optical properties[J]. J Cryst Growth, 2018, 498: 405–410.
[27] [27] PAWAR S A, PATIL D S, SURYAWANSHI M P, et al. Effect of different annealing environments on the solar cell performance of CdSe pebbles[J]. Acta Mater, 2016, 108: 152–160.
[28] [28] VYDYANATH H R, ELLSWORTH J, KENNEDY J J, et al. Recipe to minimize Te precipitation in CdTe and (Cd, Zn)Te crystals[J]. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 1992, 10(4): 1476–1484.
[29] [29] ZAKI M Y, SAVA F, SIMANDAN I D, et al. From non-stoichiometric CTSe to single phase and stoichiometric CZTSe films by annealing under Sn+Se atmosphere[J]. Ceram Int, 2023, 49(21): 33692–33702.
[30] [30] YU P F, JIANG B R, HAN Z, et al. Characterization of physical and optical properties of a new radiation detection material CdMgTe[J]. Opt Mater, 2022, 131: 112656.
[31] [31] HWANG Y, KIM H, CHO S, et al. Temperature dependence of Vickers hardness for Cd1−xMnxTe (0⩽x⩽0.82) single crystals[J]. J Cryst Growth, 2003, 249(3–4): 391–395.
[32] [32] YODER‐SHORT D R, DEBSKA U, FURDYNA J K. Lattice parameters of Zn1−xMnxSe and tetrahedral bond lengths in AII1−xMnxBVI alloys[J]. 1985, 58(11): 4056–4060.
[33] [33] XU S H, WANG C L, CUI Y P. Theoretical characters of MgX (X = Te, Se, S and O) clusters[J]. J Nonlinear Optic Phys Mat, 2010, 19(4): 695–701.
[34] [34] REJHON M, FRANC J, DDI V, et al. Influence of deep levels on the electrical transport properties of CdZnTeSe detectors[J]. 2018, 124(23): 235702.
[35] [35] REJHON M, DDI V, BERAN L, et al. Investigation of deep levels in CdZnTeSe crystal and their effect on the internal electric field of CdZnTeSe gamma-ray detector[J]. IEEE Trans Nucl Sci, 2019, 66(8): 1952–1958.
[36] [36] MYCIELSKI A, KOCHANOWSKA D, WITKOWSKA-BARAN M, et al. Semiconductor crystals based on CdTe with Se–Some structural and optical properties[J]. J Cryst Growth, 2018, 498: 405–410.
[37] [37] KIM K, KIM Y, FRANC J, et al. Enhanced hole mobility-lifetime product in selenium-added CdTe compounds[J]. Nucl Instrum Meth Phys Res Sect A Accel Spectrometers Detect Assoc Equip, 2023, 1053: 168363.
[38] [38] ROY U, BOLOTNIKOV A, CAMARDA G, et al. Compositional homogeneity and X-ray topographic analyses of CdTexSe1−x grown by the vertical Bridgman technique[J]. J Cryst Growth, 2015, 411: 34–37
Get Citation
Copy Citation Text
LI Yuting, YU Pengfei, HAN Zhao, XU Qingyang, BAO Yunzhen, JIE Wanqi. Strategy for Enhancing the Quality of CdMgTe Single Crystals for Room-Temperature Radiation Detectors[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1981
Category:
Received: Nov. 28, 2024
Accepted: Aug. 12, 2025
Published Online: Aug. 12, 2025
The Author Email: