International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42006(2025)

Recent progress of neuromorphic sensory and optoelectronic systems

Nam San, Kang Donghyun, Jo Jeong-Wan, Kang Dong-Won, Park Sung Kyu, and Kim Yong-Hoon
References(203)

[1] [1] Cai P Q et al. 2020. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation-contraction signatures.Nat. Commun.11, 2183.

[2] [2] Guo H Y et al. 2018. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids.Sci. Robot.3, eaat2516.

[3] [3] Jung Y H, Park B, Kim J U and Kim T-I. 2019. Bioinspired electronics for artificial sensory systems.Adv. Mater.31, 1803637.

[4] [4] He K, Wang C, He Y L, Su J T and Chen X D. 2023. Artificial neuron devices.Chem. Rev.123, 13796–13865.

[5] [5] Sun F Q, Lu Q F, Feng S M and Zhang T. 2021. Flexible artificial sensory systems based on neuromorphic devices.ACS Nano15, 3875–3899.

[6] [6] Tian H, Zhao L F, Wang X F, Yeh Y-W, Yao N, Rand B P and Ren T-L. 2017. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing.ACS Nano11, 12247–12256.

[7] [7] Zhang C et al. 2019. Bioinspired artificial sensory nerve based on nafion memristor.Adv. Funct. Mater.29, 1808783.

[8] [8] Hu L X, Fu S, Chen Y H, Cao H T, Liang L Y, Zhang H L, Gao J H, Wang J R and Zhuge F. 2017. Ultrasensitive memristive synapses based on lightly oxidized sulfide films.Adv. Mater.29, 1606927.

[9] [9] Tan Z-H, Yang R, Terabe K, Yin X-B, Zhang X-D and Guo X. 2016. Synaptic metaplasticity realized in oxide memristive devices.Adv. Mater.28, 377–384.

[10] [10] Gkoupidenis P, Schaefer N, Strakosas X, Fairfield J A and Malliaras G G. 2015. Synaptic plasticity functions in an organic electrochemical transistor.Appl. Phys. Lett.107, 263302.

[11] [11] Yan X D, Qian J H, Sangwan V K and Hersam M C. 2022. Progress and challenges for memtransistors in neuromorphic circuits and systems.Adv. Mater.34, 2108025.

[12] [12] Chen L et al. 2024. Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles.Proc. Natl Acad. Sci. USA121, e2407971121.

[13] [13] Li Y, Qiu Z C, Kan H, Yang Y, Liu J W, Liu Z R, Yue W J, Du G Q, Wang C and Kim N-Y. 2024. A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors.Adv. Sci.11, 2402582.

[14] [14] Li Y, Lin Q H, Sun T, Qin M Z, Yue W J and Gao S. 2024. A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device.Adv. Funct. Mater.34, 2402356.

[15] [15] Yang W H, Kan H, Shen G Z and Li Y. 2024. A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor.Adv. Funct. Mater.34, 2312885.

[16] [16] Wang W S and Zhu L Q. 2023. Recent advances in neuromorphic transistors for artificial perception applications.Sci. Technol. Adv. Mater.24, 2152290.

[17] [17] Yu J R, Wang Y F, Qin S S, Gao G Y, Xu C, Wang Z L and Sun Q J. 2022. Bioinspired interactive neuromorphic devices.Mater. Today60, 158–182.

[18] [18] Huynh H Q, Trung T Q, Bag A, Do T D, Sultan M J, Kim M and Lee N-E. 2023. Bio-inspired artificial fast-adaptive and slow-adaptive mechanoreceptors with synapse-like functions.Adv. Funct. Mater.33, 2303535.

[19] [19] Zhang T, Zhao M H, Zhai M X, Wang L S, Ma X Y, Liao S M, Wang X N, Liu Y J and Chen D. 2024. Improving the resolution of flexible large-area tactile sensors through machine-learning perception.ACS Appl. Mater. Interfaces16, 11013–11025.

[20] [20] Niu H S, Li H, Gao S, Li Y, Wei X, Chen Y K, Yue W J, Zhou W J and Shen G Z. 2022. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin.Adv. Mater.34, 2202622.

[21] [21] Han J-K, Tcho I-W, Jeon S-B, Yu J-M, Kim W-G and Choi YK. 2022. Self-powered artificial mechanoreceptor based on tribo-electrification for a neuromorphic tactile system.Adv. Sci.9, 2105076.

[22] [22] Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O , Rosen J and van Dijken S. 2020. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves.Nat. Commun.11, 1369.

[23] [23] Kweon H et al. 2023. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory neuron.Sci. Adv.9, eadi3827.

[24] [24] Seo S et al. 2020. Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition.Nat. Commun.11, 3936.

[25] [25] Bolat S et al. 2020. Synaptic transistors with aluminum oxide dielectrics enabling full audio frequency range signal processing.Sci. Rep.10, 16664.

[26] [26] Gou G-Y et al. 2022. Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum.Sci. Adv.8, eabn2156.

[27] [27] Yun S-Y, Han J-K, Lee S-W, Yu J-M, Jeon S-B and Choi Y-K. 2023. Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware.Nano Energy109, 108322.

[28] [28] Zhang J Y, Dai S L, Zhao Y W, Zhang J H and Huang J. 2020. Recent progress in photonic synapses for neuromorphic systems.Adv. Intell. Syst.2, 1900136.

[29] [29] Lee Y and Lee T-W. 2019. Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics.Acc. Chem. Res.52, 964–974.

[30] [30] Ohigashi H, Koga K, Suzuki M, Nakanishi T, Kimura K and Hashimoto N. 1984. Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application to ultrasonic transducers.Ferroelectrics60, 263–276.

[31] [31] Kim H, Oh S, Choo H, Kang D H and Park J H. 2023. Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse.ACS Nano17, 17332–17341.

[32] [32] Cho J H, Lee J, Xia Y, Kim B, He Y Y, Renn M J, Lodge T P and Daniel Frisbie C. 2008. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic.Nat. Mater.7, 900–906.

[33] [33] Gao N W and Pan C F. 2024. Intelligent ion gels: design, performance, and applications.SmartMat5, e1215.

[34] [34] Wang B H, Huang W, Chi L F, Al-Hashimi M, Marks T J and Facchetti A. 2018. High-kgate dielectrics for emerging flexible and stretchable electronics.Chem. Rev.118, 5690–5754.

[35] [35] Jonscher A K. 1999. Dielectric relaxation in solids.J. Phys. D: Appl. Phys.32, R57–R70.

[36] [36] Wang W C et al. 2023. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft eskin.Science380, 735–742.

[37] [37] Ham S, Kang M J, Jang S, Jang J, Choi S, Kim T-W and Wang G. 2020. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications.Sci. Adv.6, eaba1178.

[38] [38] Wang S R, Kang Y F, Wang L W, Zhang H X, Wang Y S and Wang Y. 2013. Organic/inorganic hybrid sensors: a review.Sens. ActuatorsB182, 467–481.

[39] [39] Eivazzadeh-Keihan R et al. 2022. Applications of carbonbased conductive nanomaterials in biosensors.Chem. Eng. J.442, 136183.

[40] [40] Chun S, Son W, Kim H, Lim S K, Pang C and Choi C. 2019. Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin.Nano Lett.19, 3305–3312.

[41] [41] Kim S, Lee Y, Kim H D and Choi S J. 2020. A tactile sensor system with sensory neurons and a perceptual synaptic network based on semivolatile carbon nanotube transistors.NPG Asia Mater.12, 76.

[42] [42] Li Y et al. 2022. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human–machine interactions.npj Flex. Electron.6, 46.

[43] [43] Vu C C and Kim J. 2018. Human motion recognition by textile sensors based on machine learning algorithms.Sensors18, 3109.

[44] [44] Vu C C and Kim J. 2020. Highly elastic capacitive pressure sensor based on smart textiles for full-range human motion monitoring.Sens. ActuatorsA314, 112029.

[45] [45] Wen F, Sun Z D, He T Y Y, Shi Q F, Zhu M L, Zhang Z X, Li L H, Zhang T and Lee C. 2020. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications.Adv. Sci.7, 2000261.

[46] [46] Ho D H, Choi Y Y, Jo S B, Myoung J-M and Cho J H. 2021. Sensing with MXenes: progress and prospects.Adv. Mater.33, 2005846.

[47] [47] Pei Y Y, Zhang X L, Hui Z Y, Zhou J Y, Huang X, Sun G Z and Huang W. 2021. Ti3C2TXMXene for sensing applications: recent progress, design principles, and future perspectives.ACS Nano15, 3996–4017.

[48] [48] Xie X K et al. 2024. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction.ACS Nano18, 17041–17052.

[49] [49] Gao F-L, Liu J, Li X-P, Ma Q, Zhang T T, Yu Z-Z, Shang J, Li R-W and Li X F. 2023. Ti3C2TxMXene-based multifunctional tactile sensors for precisely detecting and distinguishing temperature and pressure stimuli.ACS Nano17, 16036–16047.

[50] [50] Zhang S C, Xiao Y, Chen H M, Zhang Y L, Liu H Y, Qu C M, Shao H X and Xu Y. 2023. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human–machine interaction.ACS Appl. Mater. Interfaces15, 13802–13812.

[51] [51] Huang J H et al. 2024. A bioinspired MXene-based flexible sensory neuron for tactile near-sensor computing.Nano Energy126, 109684.

[52] [52] Kaneko T, Wang Y-F, Hori M, Sekine T, Yoshida A, Takeda Y, Kumaki D and Tokito S. 2023. Printed bilayer liquid metal soft sensors for strain and tactile perception in soft robotics.Adv. Mater. Technol.8, 2300436.

[53] [53] Li N, Yuan X H, Li Y Q, Zhang G C, Yang Q H, Zhou Y X, Guo M H and Liu J. 2024. Bioinspired liquid metal based soft humanoid robots.Adv. Mater.36, 2404330.

[54] [54] Wang Z H, Lei K C, Tang H Z, Luo Y, Zhao H F, He P S, Ding W B and Lin L W. 2024. Stretchable liquid metal E-skin for soft robot proprioceptive vibration sensing.IEEE Sens. J.24, 18327–18335.

[55] [55] Kim H, Zan G T, Seo Y, Lee S and Park C. 2024. Stimuli-responsive liquid metal hybrids for human-interactive electronics.Adv. Funct. Mater.34, 2308703.

[56] [56] Li Y Z et al. 2024. A palm-like 3D tactile sensor based on liquid-metal triboelectric nanogenerator for underwater robot gripper.Nano Res.17, 10008–10016.

[57] [57] Guthrie R and Isac M. 2012.In-situsensors for liquid metal quality.High Temp. Mater. Process.31, 633–643.

[58] [58] Mokhtari M, Wada T, Le Bourlot C, Duchet-Rumeau J, Kato H, Maire E and Mary N. 2020. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800.Corros. Sci.166, 108468.

[59] [59] Kumar M, Singh R, Kang H, Kim S and Seo H. 2020. An artificial piezotronic synapse for tactile perception.Nano Energy73, 104756.

[60] [60] Hajara P, Shijeesh M R, Rose T P and Saji K J. 2024. ZnO-based triboelectric nanogenerator and tribotronic transistor for tactile switch and displacement sensor applications.Sens. ActuatorsA377, 115728.

[61] [61] Gao W X, Zhu Y, Wang Y J, Yuan G L and Liu J-M. 2020. A review of flexible perovskite oxide ferroelectric films and their application.J. Mater.6, 1–16.

[62] [62] Drake R L, Vogl A W and Mitchell A W M. 2009.Gray’s Anatomy for Students. 2nd edn (Elsevier) pp 902–903.

[63] [63] Su T Y, Liu N S, Lei D D, Wang L X, Ren Z Q, Zhang Q X, Su J, Zhang Z and Gao Y H. 2022. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism.ACS Nano16, 8461–8471.

[64] [64] Gong S, Yap L W, Zhu Y, Zhu B W, Wang Y, Ling Y Z, Zhao Y M, An T C, Lu Y R and Cheng W L. 2020. A soft resistive acoustic sensor based on suspended standing nanowire membranes with point crack design.Adv. Funct. Mater.30, 1910717.

[65] [65] Jung Y H, Pham T X, Issa D, Wang H S, Lee J H, Chung M, Lee B-Y, Kim G, Yoo C D and Lee K J. 2022. Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing.Nano Energy101, 107610.

[66] [66] Chen J W, Li L L, Ran W H, Chen D, Wang L L and Shen G Z. 2023. An intelligent MXene/MoS2 acoustic sensor with high accuracy for mechano-acoustic recognition.Nano Res.16, 3180–3187.

[67] [67] Seo D-G et al. 2019. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics.Nano Energy65, 104035.

[68] [68] Huang Q J and Zhu Y. 2019. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications.Adv. Mater. Technol.4, 1800546.

[69] [69] Goldoni R, Ozkan-Aydin Y, Kim Y-S, Kim J, Zavanelli N, Mahmood M, Liu B Y, Hammond F L III, Goldman D I and Yeo W-H. 2020. Stretchable nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback–loop control of a soft earthworm robot.ACS Appl. Mater. Interfaces12, 43388–43397.

[70] [70] Xu Y C, Deng Z H, Jin C X, Liu W R, Shi X F, Chang J H, Yu H R, Liu B, Sun J and Yang J L. 2023. An organic electrochemical synaptic transistor array for neuromorphic computation of sound localization.Appl. Phys. Lett.123, 133701.

[71] [71] Wu X L, Dang B J, Wang H, Wu X L and Yang Y C. 2022. Spike-enabled audio learning in multilevel synaptic memristor array-based spiking neural network.Adv. Intell. Syst.4, 2100151.

[72] [72] ˙Ilik B, Koyuncuolu A, Șardan-Sukas and Klah H. 2018. Thin film piezoelectric acoustic transducer for fully implantable cochlear implants.Sens. ActuatorsA280, 38–46.

[73] [73] Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S and Ielmini D. 2018. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses.Sci. Adv.4, eaat4752.

[74] [74] Zhou C Z, Zang J B, Xue C Y, Ma Y X, Hua X Q, Gao R, Zhang Z X, Li B and Zhang Z D. 2022. Design of a novel medical acoustic sensor based on MEMS bionic fish ear structure.Micromachines13, 163.

[75] [75] Moro F et al. 2022. Neuromorphic object localization using resistive memories and ultrasonic transducers.Nat. Commun.13, 3506.

[76] [76] Das S, Dodda A and Das S. 2019. A biomimetic 2D transistor for audiomorphic computing.Nat. Commun.10, 3450.

[77] [77] Oh S, Lee J-H, Seo S, Choo H, Lee D, Cho J-I and Park J-H. 2022. Electrolyte-gated vertical synapse array based on van der Waals heterostructure for parallel computing.Adv. Sci.9, 2103808.

[78] [78] Seo S et al. 2018. Artificial optic-neural synapse for colored and color-mixed pattern recognition.Nat. Commun.9, 5106.

[79] [79] Lenk C et al. 2023. Neuromorphic acoustic sensing using an adaptive microelectromechanical cochlea with integrated feedback.Nat. Electron.6, 370–380.

[80] [80] Lenk C, Ivanov T, Durstewitz S, Ved K, Gubbi V and Ziegler M. 2023. An adaptive acoustic neuromorphic auditory system.In Proc. 2023 IEEE Nanotechnology Materials and Devices Conference(IEEE) pp 210–211.

[81] [81] Hajare R, Reddy V and Srikanth R. 2022. MEMS based sensors—a comprehensive review of commonly used fabrication techniques.Mater. Today Proc.49, 720–730.

[82] [82] Taylor M R, Simon E J, Dickey J L, Hogan K A and Reece J B. 2017.Campbell Biology: Concepts & Connections. 9th edn (Pearson) pp 603.

[83] [83] Chun S Y, Song Y G, Kim J E, Kwon J U, Soh K, Kwon J Y, Kang C-Y and Yoon J H. 2023. An artificial olfactory system based on a chemi-memristive device.Adv. Mater.35, 2302219.

[84] [84] Deng Y P et al. 2023. A flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity.Adv. Funct. Mater.33, 2214139.

[85] [85] Song H W, Moon D, Won Y, Cha Y K, Yoo J, Park T H and Oh J H. 2024. A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices.Sci. Adv.10, eadl2882.

[86] [86] Lee S-W, Kang M, Han J-K, Yun S-Y, Park I and Choi Y-K. 2023. An artificial olfactory sensory neuron for selective gas detection with in-sensor computing.Device1, 100063.

[87] [87] Chu Y J, Tan H T, Zhao C Y, Wu X H and Ding S-J. 2022. Power-efficient gas-sensing and synaptic diodes based on lateral pentacene/a-IGZO PN junctions.ACS Appl. Mater. Interfaces14, 9368–9376.

[88] [88] Yang L, Wang Z X, Zhang S, Li Y, Jiang C P, Sun L and Xu W T. 2023. Neuromorphic gustatory system with salttaste perception, information processing, and excessive-intake warning capabilities.Nano Lett.23, 8–16.

[89] [89] Liu J M, Qian J G, Adil M, Bi Y L, Wu H Y, Hu X F, Wang Z K and Zhang W. 2024. Bioinspired integrated triboelectric electronic tongue.Microsyst. Nanoeng.10, 57.

[90] [90] Jeong J-Y, Cha Y K, Ahn S R, Shin J, Choi Y, Park T H and Hong S. 2022. Ultrasensitive bioelectronic tongue based on the Venus flytrap domain of a human sweet taste receptor.ACS Appl. Mater. Interfaces14, 2478–2487.

[91] [91] Ghosh S, Pannone A, Sen D, Wali A, Ravichandran H and Das S. 2023. An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior.Nat. Commun.14, 6021.

[92] [92] Persaud K and Dodd G. 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose.Nature299, 352–355.

[93] [93] Cho I et al. 2023. Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor.Light Sci. Appl.12, 95.

[94] [94] Wang C et al. 2024. Biomimetic olfactory chips based on large-scale monolithically integrated nanotube sensor arrays.Nat. Electron.7, 157–167.

[95] [95] Wang T, Huang H-M, Wang X-X and Guo X. 2021. An artificial olfactory inference system based on memristive devices.InfoMat3, 804–813.

[96] [96] Chouhdry H H, Lee D H, Bag A and Lee N-E. 2023. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor.Nat. Commun.14, 821.

[97] [97] Qian C, Choi Y, Choi Y J, Kim S, Choi Y Y, Roe D G, Kang M S, Sun J and Cho J H. 2020. Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis.Adv. Mater.32, 2002653.

[98] [98] Qian C, Choi Y, Kim S, Kim S, Choi Y J, Roe D G, Lee J H, Kang M S, Lee W H and Cho J H. 2022. Risk-perceptional and feedback-controlled response system based on NO2-detecting artificial sensory synapse.Adv. Funct. Mater.32, 2112490.

[99] [99] Liu G C et al. 2022. Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors.Adv. Funct. Mater.32, 2200959.

[100] [100] Han J-K, Park S-C, Yu J-M, Ahn J-H and Choi Y-K. 2022. A bioinspired artificial gustatory neuron for a neuromorphic based electronic tongue.Nano Lett.22, 5244–5251.

[101] [101] Pei Y F, Yan L, Wu Z H, Lu J K, Zhao J H, Chen J S, Liu Q and Yan X B. 2021. Artificial visual perception nervous system based on low-dimensional material photoelectric memristors.ACS Nano15, 17319–17326.

[102] [102] Wang H L et al. 2018. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system.Adv. Mater.30, 1803961.

[103] [103] Lee Y et al. 2018. Stretchable organic optoelectronic sensorimotor synapse.Sci. Adv.4, eaat7387.

[104] [104] Zhu S R, Xie T, Lv Z Y, Leng Y-B, Zhang Y-Q, Xu R Z, Qin J R, Zhou Y, Roy V A L and Han S-T. 2024. Hierarchies in visual pathway: functions and inspired artificial vision.Adv. Mater.36, 2301986.

[105] [105] Cho S W, Jo C, Kim Y-H and Park S K. 2022. Progress of materials and devices for neuromorphic vision sensors.Nano-Micro Lett.14, 203.

[106] [106] Wang R et al. 2022. Bio-inspired in-sensor compression and computing based on phototransistors.Small18, 2201111.

[107] [107] Zhou F C, Chen J W, Tao X M, Wang X R and Chai Y. 2019. 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor.Research2019, 9490413.

[108] [108] Song J-K et al. 2022. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays.Nat. Nanotechnol.17, 849–856.

[109] [109] Liao F Y et al. 2022. Bioinspired in-sensor visual adaptation for accurate perception.Nat. Electron.5, 84–91.

[110] [110] Islam M M et al. 2022. Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition.ACS Nano16, 10188–10198.

[111] [111] Feng G D, Jiang J, Li Y R, Xie D D, Tian B B and Wan Q. 2021. Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor.Adv. Funct. Mater.31, 2104327.

[112] [112] Zhou F C et al. 2019. Optoelectronic resistive random access memory for neuromorphic vision sensors.Nat. Nanotechnol.14, 776–782.

[113] [113] Kwon S M, Cho S W, Kim M, Heo J S, Kim Y-H and Park S K. 2019. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array.Adv. Mater.31, 1906433.

[114] [114] Cui B Y et al. 2022. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision.Nat. Commun.13, 1707.

[115] [115] Cai Y C et al. 2023. Broadband visual adaption and image recognition in a monolithic neuromorphic machine vision system.Adv. Funct. Mater.33, 2212917.

[116] [116] Choi C et al. 2020. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system.Nat. Commun.11, 5934.

[117] [117] He Z H, Shen H G, Ye D K, Xiang L Y, Zhao W R, Ding J M, Zhang F J, Di C-A and Zhu D B. 2021. An organic transistor with light intensity-dependent active photoadaptation.Nat. Electron.4, 522–529.

[118] [118] Hao Z Q et al. 2022. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions.Adv. Sci.9, 2103494.

[119] [119] Yang X Y, Xiong Z Y, Chen Y J, Ren Y, Zhou L, Li H L, Zhou Y, Pan F and Han S-T. 2020. A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays.Nano Energy78, 105246.

[120] [120] Gong Y, Xing X C, Lv Z Y, Chen J M, Xie P, Wang Y, Huang S M, Zhou Y and Han S-T. 2022. Ultrasensitive flexible memory phototransistor with detectivity of 1.8×1013 jones for artificial visual nociceptor.Adv. Intell. Syst.4, 2100257.

[121] [121] Meng J L, Wang T Y, Zhu H, Ji L, Bao W Z, Zhou P, Chen L, Sun Q-Q and Zhang D W. 2022. Integrated insensor computing optoelectronic device for environment-adaptable artificial retina perception application.Nano Lett.22, 81–89.

[122] [122] Pi L J et al. 2022. Broadband convolutional processing using band-alignment-tunable heterostructures.Nat. Electron.5, 248–254.

[123] [123] Zhao P F, Ji R X, Lao J, Jiang C L, Tian B B, Luo C H, Lin H C, Peng H and Duan C-G. 2022. Multifunctional two-terminal optoelectronic synapse based on zinc oxide/poly (3-hexylthiophene) heterojunction for neuromorphic computing.ACS Appl. Polym. Mater.4, 5688–5695.

[124] [124] Zhang J Y et al. 2023. Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems.Adv. Funct. Mater.33, 2302885.

[125] [125] Shen C, Gao X, Chen C, Ren S, Xu J-L, Xia Y-D and Wang S-D. 2022. ZnO nanowire optoelectronic synapse for neuromorphic computing.Nanotechnology33, 065205.

[126] [126] Guo T, Zhang B Z, Wang X Y, Xiao Y, Sun B, Zhou Y N and Wu Y A. 2023. Broadband optoelectronic synapse enables compact monolithic neuromorphic machine vision for information processing.Adv. Funct. Mater.33, 2303879.

[127] [127] Kim J, Song S, Lee J-M, Nam S, Kim J, Hwang D K, Park S K and Kim Y-H. 2023. Metal-oxide heterojunction optoelectronic synapse and multilevel memory devices enabled by broad spectral photocarrier modulation.Small19, 2301186.

[128] [128] Kwon S M et al. 2021. Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits.Adv. Mater.33, 2105017.

[129] [129] Lao J et al. 2022. Ultralow-power machine vision with self-powered sensor reservoir.Adv. Sci.9, 2106092.

[130] [130] Guo L Q, Sun H X, Min L L, Wang M, Cao F R and Li L. 2024. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy.Adv. Mater.36, 2402253.

[131] [131] Gao Z X, Ju X, Zhang H Z, Liu X H, Chen H Y, Li W F, Zhang H L, Liang L Y and Cao H T. 2023. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation.Adv. Funct. Mater.33, 2305959.

[132] [132] Liang K et al. 2022. Fully printed optoelectronic synaptic transistors based on quantum dot–metal oxide semiconductor heterojunctions.ACS Nano16, 8651–8661.

[133] [133] Zhou G D et al. 2023. Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing.Nat. Commun.14, 8489.

[134] [134] Zhu X T, Gao C S, Ren Y W, Zhang X H, Li E L, Wang C Y, Yang F X, Wu J S, Hu W P and Chen H P. 2023. Highcontrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection.Adv. Mater.35, 2301468.

[135] [135] Wu X S, Shi S H, Liang B S, Dong Y, Yang R M, Ji R D, Wang Z R and Huang W G. 2024. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing.Sci. Adv.10, eadn4524.

[136] [136] Chaves A et al. 2020. Bandgap engineering of two-dimensional semiconductor materials.npj 2D Mater. Appl.4, 29.

[137] [137] Chen T, Gao X, Zhang J-Y, Xu J-L and Wang S-D. 2020. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current.Adv. Opt. Mater.8, 1901289.

[138] [138] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D and Zhou P. 2022. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition.Nat. Nanotechnol.17, 27–32.

[139] [139] Sangwan V K and Hersam M C. 2020. Neuromorphic nanoelectronic materials.Nat. Nanotechnol.15, 517–528.

[140] [140] Xu K M, Zhou W J and Ning Z J. 2020. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors.Small16, 2003397.

[141] [141] Zhao Y S, Fu H B, Peng A D, Ma Y, Liao Q and Yao J N. 2010. Construction and optoelectronic properties of organic one-dimensional nanostructures.Acc. Chem. Res.43, 409–418.

[142] [142] Lee Y, Min S-Y, Kim T-S, Jeong S-H, Won J Y, Kim H, Xu W T, Jeong J K and Lee T-W. 2016. Versatile metal nanowiring platform for large-scale nano- and optoelectronic devices.Adv. Mater.28, 9109–9116.

[143] [143] He Z, Yang Y, Liang H-W, Liu J-W and Yu S-H. 2019. Nanowire genome: a magic toolbox for 1D nanostructures.Adv. Mater.31, 1902807.

[144] [144] Mak K F and Shan J. 2016. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides.Nat. Photon.10, 216–226.

[145] [145] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H. 2016. 2D materials and van der Waals heterostructures.Science353, aac9439.

[146] [146] Ma S L et al. 2022. A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors.Sci. Adv.8, eabn9328.

[147] [147] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A. 2013. Ultrasensitive photodetectors based on monolayer MoS2.Nat. Nanotechnol.8, 497–501.

[148] [148] Qiao J S, Kong X H, Hu Z-X, Yang F and Ji W. 2014. Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus.Nat. Commun.5, 4475.

[149] [149] Hong T, Chamlagain B, Wang T J, Chuang H-J, Zhou Z X and Xu Y-Q. 2015. Anisotropic photocurrent response at black phosphorus–MoS2 p–n heterojunctions.Nanoscale7, 18537–18541.

[150] [150] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B. 2014. Black phosphorus field-effect transistors.Nat. Nanotechnol.9, 372–377.

[151] [151] Liu H W, Hu K, Yan D F, Chen R, Zou Y Q, Liu H B and Wang S Y. 2018. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications.Adv. Mater.30, 1800295.

[152] [152] Lee S, Peng R M, Wu C M and Li M. 2022. Programmable black phosphorus image sensor for broadband optoelectronic edge computing.Nat. Commun.13, 1485.

[153] [153] Setter N et al. 2006. Ferroelectric thin films: review of materials, properties, and applications.J. Appl. Phys.100, 051606.

[154] [154] Zhou X Y, Ke Q Q, Tang S L, Luo J L and Lu Z H. 2023. Ultraviolet photodetectors based on ferroelectric depolarization field.J. Energy Chem.77, 487–498.

[155] [155] Root S E, Savagatrup S, Printz A D, Rodriquez D and Lipomi D J. 2017. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics.Chem. Rev.117, 6467–6499.

[156] [156] Sndergaard R R, Hsel M and Krebs F C. 2013. Roll-to-Roll fabrication of large area functional organic materials.J. Polym. Sci.B51, 16–34.

[157] [157] Lee Y R, Trung T Q, Hwang B-U and Lee N-E. 2020. A flexible artificial intrinsic-synaptic tactile sensory organ.Nat. Commun.11, 2753.

[158] [158] Yang B et al. 2020. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors.Adv. Mater.32, 2001227.

[159] [159] Deng W, Zhang X J, Jia R F, Huang L M, Zhang X H and Jie J S. 2019. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system.NPG Asia Mater.11, 77.

[160] [160] Baek E et al. 2020. Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions.Nat. Electron.3, 398–408.

[161] [161] Ji D Y et al. 2019. Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays.Nat. Commun.10, 12.

[162] [162] Liu J Y, Zhou K, Liu J, Zhu J, Zhen Y G, Dong H L and Hu W P. 2018. Organic-single-crystal vertical field-effect transistors and phototransistors.Adv. Mater.30, 1803655.

[163] [163] Shen H G, He Z H, Jin W L, Xiang L Y, Zhao W R, Di C-A and Zhu D B. 2019. Mimicking sensory adaptation with dielectric engineered organic transistors.Adv. Mater.31, 1905018.

[164] [164] Han T-H, Tan S, Xue J J, Meng L, Lee J-W and Yang Y. 2019. Interface and defect engineering for metal halide perovskite optoelectronic devices.Adv. Mater.31, 1803515.

[165] [165] Jin C X et al. 2022. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array.Nano Lett.22, 3372–3379.

[166] [166] Lee T-J, Yun K-R, Kim S-K, Kim J-H, Jin J, Sim K-B, Lee DH, Hwang G W and Seong T-Y. 2021. Realization of an artificial visual nervous system using an integrated optoelectronic device array.Adv. Mater.33, 2105485.

[167] [167] Shan X Y et al. 2022. Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision.Adv. Sci.9, 2104632.

[168] [168] Dodda A et al. 2022. Active pixel sensor matrix based on monolayer MoS2 phototransistor array.Nat. Mater.21, 1379–1387.

[169] [169] Demb J B. 2008. Functional circuitry of visual adaptation in the retina.J. Physiol.586, 4377–4384.

[170] [170] Mante V, Frazor R A, Bonin V, Geisler W S and Carandini M. 2005. Independence of luminance and contrast in natural scenes and in the early visual system.Nat. Neurosci.8, 1690–1697.

[171] [171] Gonzalezharo C, Gonzalezdesuso J, Padulles J, Drobnic F and Escanero J. 2005. Physiological adaptation during short distance triathlon swimming and cycling sectors simulation.Physiol. Behav.86, 467–474.

[172] [172] Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H and Kim S. 2020. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure.ACS Nano14, 9796–9806.

[173] [173] Liu W Z, Yang X H, Wang Z Q, Li Y Z, Li J X, Feng Q S, Xie X H, Xin W, Xu H Y and Liu Y C. 2023. Self-powered and broadband opto-sensor with bionic visual adaptation function based on multilayer -InSe flakes.Light Sci. Appl.12, 180.

[174] [174] Xie D D, Gao G, Tian B B, Shu Z W, Duan H G, Zhao W-W, He J and Jiang J. 2023. Porous metal–organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation.Adv. Mater.35, 2212118.

[175] [175] Wen W et al. 2024. Biomimetic nanocluster photoreceptors for adaptative circular polarization vision.Nat. Commun.15, 2397.

[176] [176] Wang C-Y et al. 2020. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor.Sci. Adv.6, eaba6173.

[177] [177] Wang Y et al. 2024. Monolithic 2D perovskites enabled artificial photonic synapses for neuromorphic vision sensors.Adv. Mater.36, 2311524.

[178] [178] Fu X et al. 2023. Graphene/MoS2−xOx/graphene photomemristor with tunable non-volatile responsivities for neuromorphic vision processing.Light Sci. Appl.12, 39.

[179] [179] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T. 2020. Ultrafast machine vision with 2D material neural network image sensors.Nature579, 62–66.

[180] [180] Wang X, Lu Y, Zhang J Y, Zhang S Q, Chen T Q, Ou Q Q and Huang J. 2021. Highly sensitive artificial visual array using transistors based on porphyrins and semiconductors.Small17, 2005491.

[181] [181] Sun L, Qu S D, Du Y, Yang L, Li Y, Wang Z X and Xu W T. 2023. Bio-inspired vision and neuromorphic image processing using printable metal oxide photonic synapses.ACS Photonics10, 242–252.

[182] [182] Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E and Samor` P. 2016. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend.Nat. Nanotechnol.11, 769–775.

[183] [183] Xue F et al. 2020. Optoelectronic ferroelectric domain-wall memories made from a single van der Waals ferroelectric.Adv. Funct. Mater.30, 2004206.

[184] [184] Lee D, Yang S M, Kim T H, Jeon B C, Kim Y S, Yoon J-G, Lee H N, Baek S H, Eom C B and Noh T W. 2012. Multilevel data storage memory using deterministic polarization control.Adv. Mater.24, 402–406.

[185] [185] Zhang J R, Zhang J, Lok T M and Lyu M R. 2007. A hybrid particle swarm optimization–back-propagation algorithm for feedforward neural network training.Appl. Math. Comput.185, 1026–1037.

[186] [186] Quraishi I, Choudhury J P and De M. 2012. Image recognition and processing using Artificial Neural Network.In Proceedings 2012 1st International Conference on Recent Advances in Information Technology(IEEE) pp 95–100

[187] [187] Yu J R, Yang X XX, Gao G, Xiong Y F, Wang Y, Han J, Chen Y, Zhang H, Sun Q and Wang Z L. 2021. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure.Sci. Adv.7, eabd9117.

[188] [188] Gu L J, Li Y R, Xie D D and Jiang J. 2022. Fully opticaldriving ionotronic InGaZnO4 phototransistor for gatetunable bidirectional photofiltering and visual perception.IEEE Trans. Electron Devices69, 4382–4385.

[189] [189] Gu J X et al. 2018. Recent advances in convolutional neural networks.Pattern Recognit.77, 354–377.

[190] [190] Wang S et al. 2021. Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception.Natl Sci. Rev.8, nwaa172.

[191] [191] Jo C, Kim J, Kwak J Y, Kwon S M, Park J B, Kim J, Park G-S, Kim M-G, Kim Y-H and Park S K. 2022. Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays.Adv. Mater.34, 2108979.

[192] [192] Lukoeviius M and Jaeger H. 2009. Reservoir computing approaches to recurrent neural network training.Comput. Sci. Rev.3, 127–149.

[193] [193] Tanaka G, Yamane T, Hroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A. 2019. Recent advances in physical reservoir computing: a review.Neural Netw.115, 100–123.

[194] [194] Chen Y X, Fang F Z and Zhang N. 2024. Advance in additive manufacturing of 2D materials at the atomic and close-toatomic scale.npj 2D Mater. Appl.8, 17.

[195] [195] Serra P and Piqu A. 2019. Laser-induced forward transfer: fundamentals and applications.Adv. Mater. Technol.4, 1800099.

[196] [196] Xu H C et al. 2023. A fully integrated, standalone stretchable device platform with in-sensor adaptive machine learning for rehabilitation.Nat. Commun.14, 7769.

[197] [197] Bello H O, Ige A B and Ameyaw M N. 2024. Adaptive machine learning models: concepts for real-time financial fraud prevention in dynamic environments.World J. Adv. Eng. Technol. Sci.12, 21–34.

[198] [198] Gligorea I, Cioca M, Oancea R, Gorski A-T, Gorski H and Tudorache P. 2023. Adaptive learning using artificial intelligence in e-learning: a literature review.Educ. Sci.13, 1216.

[199] [199] Akintuyi O B. 2024. Adaptive AI in precision agriculture: a review: investigating the use of self-learning algorithms in optimizing farm operations based on real-time data.J. Multidiscip. Stud.7, 16–30.

[200] [200] Rashid K, Saeed Y, Ali A, Jamil F, Alkanhel R and Muthanna A. 2023. An adaptive real-time malicious node detection framework using machine learning in vehicular Ad-Hoc networks (VANETs).Sensors23, 2594.

[201] [201] Wu L, Huang X D, Cui J G, Liu C and Xiao W S. 2023. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot.Expert Syst. Appl.215, 119410.

[202] [202] Song T B, Hu W J, Cai J F, Liu W J, Yuan Q and He K 2023. Bio-inspired swarm intelligence: a flocking project with group object recognition.In Proceedings 2023 3rd International Conference on Consumer Electronics and Computer Engineering(IEEE) pp 834–837

[203] [203] Li L H, Liu L L, Shao Y X, Zhang X, Chen Y, Guo C and Nian H. 2023. Enhancing swarm intelligence for obstacle avoidance with multi-strategy and improved dung beetle optimization algorithm in mobile robot navigation.Electronics12, 4462.

Tools

Get Citation

Copy Citation Text

Nam San, Kang Donghyun, Jo Jeong-Wan, Kang Dong-Won, Park Sung Kyu, Kim Yong-Hoon. Recent progress of neuromorphic sensory and optoelectronic systems[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42006

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Oct. 1, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adbb33

Topics