Acta Optica Sinica, Volume. 43, Issue 4, 0410001(2023)

Polarization Image Denoising Based on Unsupervised Learning

Haofeng Hu1,2,3, Huifeng Jin1,2, Xiaobo Li3、*, Jingsheng Zhai3, and Tiegen Liu1,2
Author Affiliations
  • 1School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • 3School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(9)
    Framework of unsupervised polarimetric-image denoising generative adversarial network
    Structure of generative adversarial network. (a) Structure of generators; (b) structure of discriminators
    Processing results of noisy images with different network structures
    Processing results of indoor noise images by different methods
    Denoising results of four different materials
    Processing results of outdoor noise images by different methods
    • Table 1. Indicator comparison of intensity, DoLP, and AoP images for different network structures

      View table

      Table 1. Indicator comparison of intensity, DoLP, and AoP images for different network structures

      NetworkNet-1Net-2Net-3Net-4
      DDoLP××
      DAoP××
      Intensity imagePSNR /dB23.705726.314231.285931.3139
      SSIM0.71040.88740.89700.8877
      DoLP imagePSNR /dB19.212224.558626.235127.6377
      SSIM0.55170.65360.66310.6849
      AoP imagePSNR /dB13.324012.780113.914115.4566
      SSIM0.19120.19120.19790.2123
    • Table 2. Indicator comparison of intensity, DoLP, and AoP images for different methods

      View table

      Table 2. Indicator comparison of intensity, DoLP, and AoP images for different methods

      MethodIntensity imageDoLP imageAoP image
      SSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dB
      BM3D0.886333.33740.294023.44880.194213.6127
      PDRDN0.892831.45480.684325.22430.204915.8199
      Proposed0.887731.31390.684927.63770.212315.4566
    • Table 3. Indicator comparison of intensity, DoLP, and AoP images for different materials

      View table

      Table 3. Indicator comparison of intensity, DoLP, and AoP images for different materials

      MaterialIntensity imageDoLP imageAoP image
      SSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dB
      Resin0.900732.55960.670327.35570.207115.7295
      Fabric0.920733.44520.777630.16270.246215.8806
      Wood0.875531.08950.674830.22640.231916.6111
      Plastic0.918132.89640.775527.90450.240916.4649
    Tools

    Get Citation

    Copy Citation Text

    Haofeng Hu, Huifeng Jin, Xiaobo Li, Jingsheng Zhai, Tiegen Liu. Polarization Image Denoising Based on Unsupervised Learning[J]. Acta Optica Sinica, 2023, 43(4): 0410001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 26, 2022

    Accepted: Sep. 22, 2022

    Published Online: Feb. 22, 2023

    The Author Email: Li Xiaobo (lixiaobo@tju.edu.cn)

    DOI:10.3788/AOS221645

    Topics