Acta Optica Sinica, Volume. 44, Issue 18, 1812001(2024)

Estimation of Gas Velocity in Optical Gas Imaging Based on Deep Optical Flow Network

Xiaoyu Gu, Xiaojing Gu*, Jie Ding, and Xingsheng Gu
Author Affiliations
  • Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • show less
    Figures & Tables(13)
    Framework for generating gas optical flow dataset
    Schematic diagram of ray marching method
    Three-layer radiative transfer model
    Synthesized gas optical flow dataset. (a)(d)(g) Frame 1; (b)(e)(h) frame 2; (c)(f)(i) optical flow label
    Schematic diagram of gas column density and velocity estimation
    Estimation results of multiple optical flow methods on the gas optical flow validation set. (a) Frame 1; (b) frame 2; (c) optical flow label; (d) Farnebäck; (e) DIS; (f) FlowNet2; (g) PWC-Net; (h) RAFT; (i) GMA; (j) FlowNet2+ours
    Estimated optical flow results of real images. (a) Frame 1; (b) frame 2; (c) Farnebäck; (d) DIS; (e) FlowNet2; (f) PWC-Net; (g) RAFT; (h) GMA; (i) ours
    Continuous synthetic gas optical flow data. (a)(b)(c)(d) Frame 1, 20, 40, 60 gas images; (e)(f)(g)(h) frame 1, 20, 40, 60 gas optical flow label
    Comparison of warping transformations between the FlyingChairs and gas optical flow dataset. (a) Origin image in FlyingChairs; (b) origin image in gas optical flow dataset; (c) warped image in FlyingChairs; (d) warped image in gas optical flow dataset
    Comparisons of optical flow estimation results using different loss functions. (a)(b) Frame 1; (c)(d) frame 2; (e)(f) optical flow label; (g)(h) optical flow estimation results with gradient loss; (i)(j) optical flow estimation results without gradient loss
    • Table 1. Performance comparison of different optical flow methods on the gas optical flow validation dataset

      View table

      Table 1. Performance comparison of different optical flow methods on the gas optical flow validation dataset

      MethodAEPEAAE
      Farnebäck74.481.26
      DIS303.950.90
      FlowNet2144.030.92
      PWC-Net154.150.34
      RAFT164.460.87
      GMA174.541.18
      FlowNet2+Rangels183.990.91
      PWC-Net+ours1.730.34
      RAFT+ours1.290.31
      GMA+ours1.350.30
      FlowNet2+ours1.270.27
    • Table 2. Comparison of velocity estimation accuracy of different optical flow methods on continuous synthetic gas data

      View table

      Table 2. Comparison of velocity estimation accuracy of different optical flow methods on continuous synthetic gas data

      MethodAccuracy /%
      Farnebäck723.66
      DIS3072.90
      FlowNet21459.64
      PWC-Net1538.81
      RAFT1672.59
      GMA1760.93
      FlowNet2+Rangels1865.51
      FlowNet2+ours81.66
    • Table 3. AEPE obtained from different methods in ablation study

      View table

      Table 3. AEPE obtained from different methods in ablation study

      ConditionFlowNet214PWC-Net15RAFT16GMA17
      4.034.154.464.54
      +finetune4.745.064.514.59
      +finetune+background1.291.731.311.37
      +finetune +gradientloss5.094.884.524.59
      +finetune+background+gradientloss1.271.731.291.35
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyu Gu, Xiaojing Gu, Jie Ding, Xingsheng Gu. Estimation of Gas Velocity in Optical Gas Imaging Based on Deep Optical Flow Network[J]. Acta Optica Sinica, 2024, 44(18): 1812001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jan. 31, 2024

    Accepted: Mar. 12, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Gu Xiaojing (xjing.gu@ecust.edu.cn)

    DOI:10.3788/AOS240598

    CSTR:32393.14.AOS240598

    Topics