Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1800003(2024)

Review of Light Field Super-Resolution Algorithm Based on Deep Learning

Yawei Xiong, Anzhi Wang*, and Kaili Zhang
Author Affiliations
  • School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • show less
    Figures & Tables(13)
    Biplane light field
    Visualizations of 4D light field
    General structure of LFSSR
    General structure of LFASR
    General structure of the LFSASR
    Samples of LF datasets
    Visual results of different LFASR methods
    Visual results of different LFSASR methods
    Visual results of different LFSSR methods
    • Table 1. Common used datasets of LFSR

      View table

      Table 1. Common used datasets of LFSR

      Dataset nameCategoryAmount(categories/scenes)Depth map(yes/no)
      HCInew66Synthetic24 categoriesYes
      HCIold67Synthetic13 scenesYes
      EPFL68Real-world10 categoriesYes
      INRIA69Real-world109 scenesNo
      STFGantry70Real-world22 scenesNo
      STFLytro71Real-world9 categoriesYes
    • Table 2. Performance comparison (PSNR/SSIM) of different LFASR methods on different datasets

      View table

      Table 2. Performance comparison (PSNR/SSIM) of different LFASR methods on different datasets

      MethodDataset
      HCInewHCIoldINRIA
      VSLFC7432.85/0.90938.58/0.94432.53/0.899
      CNN-EPI4526.64/0.74431.43/0.85025.05/0.740
      ShearedEPI4031.84/0.89837.61/0.94232.35/0.911
      MALFRNet4933.46/0.91640.36/0.94933.79/0.912
    • Table 3. Performance comparison (PSNR/SSIM) of different LFSASR methods at ×2 and ×4 magnifications

      View table

      Table 3. Performance comparison (PSNR/SSIM) of different LFSASR methods at ×2 and ×4 magnifications

      MethodScaleParameterDataset
      EPFLHCInewHCIoldINRIASTFgantry
      Bicubic×229.74/0.93831.89/0.93637.69/0.97931.33/0.95831.06/0.950
      LF-InterNet60×25.04M34.14/0.97737.28/0.97644.45/0.99535.80/0.98438.72/0.991
      DPT64×23.73M34.48/0.97637.35/0.97744.31/0.99436.40/0.98439.52/0.993
      LFT63×21.11M34.80/0.97937.84/0.97944.52/0.99536.59/0.98640.51/0.994
      EPIT65×21.42M34.83/0.97838.23/0.98145.08/0.99536.67/0.98542.17/0.996
      Bicubic×425.14/0.83227.61/0.85232.42/0.93426.82/0.88725.93/0.845
      LF-InterNet60×45.48M28.67/0.91630.98/0.91637.11/0.97230.64/0.94930.53/0.941
      DPT64×43.78M28.93/0.91731.19/0.91937.39/0.97230.96/0.95031.14/0.949
      LFT63×41.16M29.25/0.92131.46/0.92237.63/0.97431.20/0.95231.86/0.955
      EPIT65×41.47M29.34/0.92031.51/0.92337.68/0.97431.27/0.95332.18/0.957
    • Table 4. Performance comparison (PSNR/SSIM) of different LFSSR methods at ×2 and ×4 magnifications

      View table

      Table 4. Performance comparison (PSNR/SSIM) of different LFSSR methods at ×2 and ×4 magnifications

      MethodScaleParameterDataset
      EPFLHCInewHCIoldINRIASTFgantry
      Bicubic×229.74/0.93831.89/0.93637.69/0.97931.33/0.95831.06/0.950
      EDSR28×238.62 M33.09/0.96334.83/0.95941.01/0.98734.96/0.97636.30/0.982
      resLF29×27.982 M33.62/0.97136.69/0.97443.42/0.99335.40/0.98038.35/0.990
      LF-DFnet30×23.940 M34.51/0.97637.42/0.97744.20/0.99436.42/0.98439.43/0.993
      DistgSSR34×23.532 M34.80/0.97937.95/0.98044.92/0.99536.58/0.98640.37/0.994
      Bicubic×425.26/0.83227.72/0.85232.58/0.93426.95/0.88726.09/0.842
      EDSR28×438.89 M27.83/0.88529.59/0.88635.18/0.95329.66/0.92528.70/0.907
      resLF29×48.646 M28.26/0.90430.72/0.91136.71/0.96830.34/0.94130.19/0.932
      LF-DFnet30×43.990 M28.77/0.91731.23/0.92037.32/0.97230.83/0.95031.15/0.944
      DistgSSR34×43.582 M28.98/0.91931.38/0.92237.55/0.97330.99/0.95231.63/0.953
    Tools

    Get Citation

    Copy Citation Text

    Yawei Xiong, Anzhi Wang, Kaili Zhang. Review of Light Field Super-Resolution Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1800003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 16, 2024

    Accepted: Mar. 13, 2024

    Published Online: Sep. 9, 2024

    The Author Email: Anzhi Wang (wanganzhi@gznu.edu.cn)

    DOI:10.3788/LOP240543

    CSTR:32186.14.LOP240543

    Topics