Acta Optica Sinica, Volume. 44, Issue 10, 1026001(2024)

Progress in Propagation Control of Non-Diffracting Bessel Beams (Invited)

Yanke Li, Sheng Liu*, Peng Li, Bingyan Wei, Dandan Wen, and Jianlin Zhao**
Author Affiliations
  • School of Physical Science and Technology, Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, Northwestern Polytechnical University, Xi’an 710129, Shaanxi , China
  • show less
    References(112)

    [1] Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory[J]. Journal of the Optical Society of America A, 4, 651-654(1987).

    [2] Sprangle P, Hafizi B. Comment on nondiffracting beams[J]. Physical Review Letters, 66, 837(1991).

    [3] Durnin J, Miceli J J, Eberly J H. Comment on nondiffracting beams-reply[J]. Physical Review Letters, 66, 838(1991).

    [4] Durnin J, Miceli J,, Eberly J H. Diffraction-free beams[J]. Physical Review Letters, 58, 1499-1501(1987).

    [5] Bouchal Z, Wagner J, Chlup M. Self-reconstruction of a distorted nondiffracting beam[J]. Optics Communications, 151, 207-211(1998).

    [6] Fahrbach F O, Rohrbach A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media[J]. Nature Communications, 3, 632(2012).

    [7] Li Z F, Alici K B, Caglayan H et al. Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture[J]. Physical Review Letters, 102, 143901(2009).

    [8] Shi C Z, Dubois M, Wang Y et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, 7250-7253(2017).

    [9] Jiang X, Liang B, Cheng J C et al. Twisted acoustics: metasurface-enabled multiplexing and demultiplexing[J]. Advanced Materials, 30, e1800257(2018).

    [10] Marston P L. Scattering of a Bessel beam by a sphere[J]. The Journal of the Acoustical Society of America, 121, 753-758(2007).

    [11] Lorenser D, Singe C C, Curatolo A et al. Energy-efficient low-Fresnel-number Bessel beams and their application in optical coherence tomography[J]. Optics Letters, 39, 548-551(2014).

    [12] Yi L Y, Sun L Q, Ding W W. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth[J]. Journal of Biomedical Optics, 22, 106016(2017).

    [13] Yin B W, Hyun C, Gardecki J A et al. Extended depth of focus for coherence-based cellular imaging[J]. Optica, 4, 959-965(2017).

    [14] Fan J L, Rivera J A, Sun W et al. High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics[J]. Nature Communications, 11, 6020(2020).

    [15] Sheppard C J R, Castello M, Tortarolo G et al. Image scanning microscopy with multiphoton excitation or Bessel beam illumination[J]. Journal of the Optical Society of America A, 37, 1639-1649(2020).

    [16] Chen B Y, Huang X S, Gou D Z et al. Rapid volumetric imaging with Bessel-beam three-photon microscopy[J]. Biomedical Optics Express, 9, 1992-2000(2018).

    [17] Fahrbach F O, Simon P, Rohrbach A. Microscopy with self-reconstructing beams[J]. Nature Photonics, 4, 780-785(2010).

    [18] Xie J J, Tang S Y, Chen Y Q et al. Self-reconstruction characteristics of Bessel beam in biological tissue[J]. Chinese Journal of Lasers, 49, 0507302(2022).

    [19] Chen X L, Zhang C, Lin P et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography[J]. Nature Communications, 8, 15117(2017).

    [20] Hua X W, Guo C L, Wang J et al. Depth-extended, high-resolution fluorescence microscopy: whole-cell imaging with double-ring phase (DRiP) modulation[J]. Biomedical Optics Express, 10, 204-214(2018).

    [21] Ayala Y A, Arzola A V, Volke-Sepúlveda K. Comparative study of optical levitation traps: focused Bessel beam versus Gaussian beams[J]. Journal of the Optical Society of America B, 33, 1060-1067(2016).

    [22] Garcés-Chávez V, McGloin D, Padgett M J et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle[J]. Physical Review Letters, 91, 093602(2003).

    [23] Porfirev A. Realisation of active pulling/pushing laser beams for light-absorbing particles in the air with a pair of diffractive optical elements[J]. Optics & Laser Technology, 133, 106584(2021).

    [24] Garcés-Chávez V, McGloin D, Melville H et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 419, 145-147(2002).

    [25] Hsu D K, Margetan F J, Thompson D O. Bessel beam ultrasonic transducer: fabrication method and experimental results[J]. Applied Physics Letters, 55, 2066-2068(1989).

    [26] Lu J Y, Song T K, Kinnick R R et al. In vitro and in vivo real-time imaging with ultrasonic limited diffraction beams[J]. IEEE Transactions on Medical Imaging, 12, 819-829(1993).

    [27] Zhao S M, Zhang W H, Wang L et al. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment[J]. Scientific Reports, 9, 2025(2019).

    [28] Willner A E, Zhao Z, Ren Y X et al. Underwater optical communications using orbital angular momentum-based spatial division multiplexing[J]. Optics Communications, 408, 21-25(2018).

    [29] Fu S Y, Gao C Q. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams[J]. Photonics Research, 4, B1-B4(2016).

    [30] Zhu K C, Zhou G Q, Li X G et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 16, 21315-21320(2008).

    [31] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 40, 4827-4830(2015).

    [32] Zhang H, Ding W Q, Fu P et al. Reducing orbital angular momentum crosstalk of the Bessel-Gaussian beam for underwater optical communications[J]. Journal of Optics, 22, 065702(2020).

    [33] Amako J, Sawaki D, Fujii E. Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics[J]. Journal of the Optical Society of America B, 20, 2562-2568(2003).

    [34] Mikutis M, Kudrius T, Šlekys G et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams[J]. Optical Materials Express, 3, 1862-1871(2013).

    [35] Bhuyan M K, Courvoisier F, Lacourt P A et al. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams[J]. Optics Express, 18, 566-574(2010).

    [36] Yang L, El-Tamer A, Hinze U et al. Two-photon polymerization of cylinder microstructures by femtosecond Bessel beams[J]. Applied Physics Letters, 105, 041110(2014).

    [38] Sun W G, Ji L F, Zheng J C et al. High-aspect-ratio photonic-crystal structure of lithium niobate fabricated via femtosecond Bessel beam direct writing[J]. Chinese Journal of Lasers, 49, 1002503(2022).

    [39] Yang Z Q, Duan J, Chen H et al. Chemically strengthened glass fabricated by picosecond Bessel beam cutting[J]. Chinese Journal of Lasers, 46, 1102010(2019).

    [40] Whittaker E T. On the partial differential equations of mathematical physics[J]. Mathematische Annalen, 57, 333-355(1903).

    [41] Havelock T H. Mathematical analysis of wave propagation in isotropic of p dimensions[J]. Proceedings of the London Mathematical Society, 2, 122-137(1905).

    [42] Scott G, McArdle N. Efficient generation of nearly diffraction-free beams using an axicon[J]. Optical Engineering, 31, 2640-2643(1992).

    [43] Lu W H, Wu F T, Zheng W T. Generation of non-diffraction Bessel-liked beam using a lens axicon[J]. Acta Optica Sinica, 30, 1618-1621(2010).

    [44] Sun C, He Y L, Chen J et al. Bessel beam generated by linear radial gradient-index lens[J]. Chinese Journal of Lasers, 42, 0802002(2015).

    [45] Herman R M, Wiggins T A. Production and uses of diffractionless beams[J]. Journal of the Optical Society of America A, 8, 932-942(1991).

    [46] Paterson C, Smith R. Higher-order Bessel waves produced by axicon-type computer-generated holograms[J]. Optics Communications, 124, 121-130(1996).

    [47] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 177, 297-301(2000).

    [48] Vasara A, Turunen J, Friberg A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 6, 1748-1754(1989).

    [49] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012).

    [50] Arbabi A, Horie Y, Bagheri M et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 10, 937-943(2015).

    [51] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [52] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).

    [53] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [54] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light, Science & Applications, 5, e16003(2016).

    [55] Chen W T, Khorasaninejad M, Zhu A Y et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light, Science & Applications, 6, e16259(2017).

    [56] Liu S, Noor A, Du L L et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 3, 1968-1977(2016).

    [57] Uehara K, Kikuchi H. Generation of nearly diffraction-free laser beams[J]. Applied Physics B, 48, 125-129(1989).

    [58] Cox A J, Dibble D C. Nondiffracting beam from a spatially filtered Fabry-Perot resonator[J]. Journal of the Optical Society of America A, 9, 282-286(1992).

    [59] Grosjean T, Saleh S S, Suarez M A et al. Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams[J]. Applied Optics, 46, 8061-8067(2007).

    [60] Xie C, Hu M L, Xu Z W et al. High power femtosecond Bessel-X pulses directly from a compact fiber laser system[J]. Applied Physics Letters, 101, 151111(2012).

    [61] Steinvurzel P, Tantiwanichapan K, Goto M et al. Fiber-based Bessel beams with controllable diffraction-resistant distance[J]. Optics Letters, 36, 4671-4673(2011).

    [62] Shen Y J, Pidishety S, Nape I et al. Self-healing of structured light: a review[J]. Journal of Optics, 24, 103001(2022).

    [63] Ring J D, Lindberg J, Mourka A et al. Auto-focusing and self-healing of Pearcey beams[J]. Optics Express, 20, 18955-18966(2012).

    [64] Vyas S, Kozawa Y, Sato S. Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane[J]. Journal of the Optical Society of America A, 28, 837-843(2011).

    [65] McGloin D, Garcés-Chávez V, Dholakia K. Interfering Bessel beams for optical micromanipulation[J]. Optics Letters, 28, 657-659(2003).

    [66] Indebetouw G. Nondiffracting optical fields: some remarks on their analysis and synthesis[J]. Journal of the Optical Society of America A, 6, 150-152(1989).

    [67] Berry M V, Balazs N L. Non-spreading wave packets[J]. American Journal of Physics, 47, 264-267(1979).

    [68] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 32, 979-981(2007).

    [69] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [70] Zhang P, Prakash J, Zhang Z et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Optics Letters, 36, 2883-2885(2011).

    [71] Polynkin P, Kolesik M, Moloney J V et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 324, 229-232(2009).

    [72] Jia S, Vaughan J C, Zhuang X W. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function[J]. Nature Photonics, 8, 302-306(2014).

    [73] Voloch-Bloch N, Lereah Y, Lilach Y et al. Generation of electron Airy beams[J]. Nature, 494, 331-335(2013).

    [74] Vettenburg T, Dalgarno H I C, Nylk J et al. Light-sheet microscopy using an Airy beam[J]. Nature Methods, 11, 541-544(2014).

    [75] Vetter C, Eichelkraut T, Ornigotti M et al. Generalized radially self-accelerating Helicon beams[J]. Physical Review Letters, 113, 183901(2014).

    [76] Schulze C, Roux F S, Dudley A et al. Accelerated rotation with orbital angular momentum modes[J]. Physical Review A, 91, 043821(2015).

    [77] Jarutis V, Matijošius A, di Trapani P et al. Spiraling zero-order Bessel beam[J]. Optics Letters, 34, 2129-2131(2009).

    [78] Chremmos I D, Chen Z G, Christodoulides D N et al. Bessel-like optical beams with arbitrary trajectories[J]. Optics Letters, 37, 5003-5005(2012).

    [79] Li Y K, Qi S X, Xie Y Q et al. Flexible trajectory control of Bessel beams with pure phase modulation[J]. Optics Express, 30, 25661-25671(2022).

    [80] Liu S, Qi S X, Li Y K et al. Controllable oscillated spin Hall effect of Bessel beam realized by liquid crystal Pancharatnam-Berry phase elements[J]. Light, Science & Applications, 11, 219(2022).

    [81] Kaminer I, Bekenstein R, Nemirovsky J et al. Nondiffracting accelerating wave packets of Maxwell’s equations[J]. Physical Review Letters, 108, 163901(2012).

    [82] Zhang P, Hu Y, Cannan D et al. Generation of linear and nonlinear nonparaxial accelerating beams[J]. Optics Letters, 37, 2820-2822(2012).

    [83] Zhang P, Hu Y, Li T C et al. Nonparaxial Mathieu and Weber accelerating beams[J]. Physical Review Letters, 109, 193901(2012).

    [84] Aleahmad P, Miri M A, Mills M S et al. Fully vectorial accelerating diffraction-free Helmholtz beams[J]. Physical Review Letters, 109, 203902(2012).

    [85] Liu S, Guo Z J, Li P et al. Tightly autofocusing beams: an effective enhancement of longitudinally polarized fields[J]. Optics Letters, 45, 575-578(2020).

    [86] Zamboni-Rached M. Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves[J]. Optics Express, 12, 4001-4006(2004).

    [87] Zamboni-Rached M, Recami E, Hernández-Figueroa H E. Theory of “frozen waves”: modeling the shape of stationary wave fields[J]. Journal of the Optical Society of America A, 22, 2465-2475(2005).

    [88] Dartora C A, Nobrega K Z, Dartora A et al. A general theory for the Frozen Waves and their realization through finite apertures[J]. Optics Communications, 265, 481-487(2006).

    [89] Suarez R A B, Ambrosio L A, Neves A A R et al. Experimental optical trapping with frozen waves[J]. Optics Letters, 45, 2514-2517(2020).

    [90] Fan X H, Wu X G, Zhou L et al. Longitudinally encoding and decoding information in light field arrays based on metasurface[J]. Chinese Journal of Lasers, 50, 1813013(2023).

    [91] Dorrah A H, Zamboni-Rached M, Mojahedi M. Frozen Waves following arbitrary spiral and snake-like trajectories in air[J]. Applied Physics Letters, 110, 051104(2017).

    [92] Čižmár T, Dholakia K. Tunable Bessel light modes: engineering the axial propagation[J]. Optics Express, 17, 15558-15570(2009).

    [93] Fan X H, Li P, Guo X Y et al. Axially tailored light field by means of a dielectric metalens[J]. Physical Review Applied, 14, 024035(2020).

    [94] Yan W X, Gao Y, Yuan Z et al. Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories[J]. Optics Letters, 46, 1494-1497(2021).

    [95] Moreno I, Davis J A, Sánchez-López M M et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance[J]. Optics Letters, 40, 5451-5454(2015).

    [96] Davis J A, Moreno I, Badham K et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Optics Letters, 41, 2270-2273(2016).

    [97] Li P, Zhang Y, Liu S et al. Generation and self-healing of vector Bessel-Gauss beams with variant state of polarizations upon propagation[J]. Optics Express, 25, 5821-5831(2017).

    [98] Li P, Zhang Y, Liu S et al. Quasi-Bessel beams with longitudinally varying polarization state generated by employing spectrum engineering[J]. Optics Letters, 41, 4811-4814(2016).

    [99] Li P, Wu D J, Zhang Y et al. Polarization oscillating beams constructed by copropagating optical frozen waves[J]. Photonics Research, 6, 756-761(2018).

    [100] Martelli P, Tacca M, Gatto A et al. Gouy phase shift in nondiffracting Bessel beams[J]. Optics Express, 18, 7108-7120(2010).

    [101] Li P, Fan X H, Wu D J et al. Self-accelerated optical activity in free space induced by the Gouy phase[J]. Photonics Research, 8, 475-481(2020).

    [102] Lü J Q, Wang X L, Zhang G L et al. Bessel-like beams with controllable rotating local linear polarization during propagation[J]. Optics Letters, 45, 1738-1741(2020).

    [103] Liu S, Qi S X, Li P et al. Analogous optical activity in free space using a single Pancharatnam-Berry phase element[J]. Laser & Photonics Reviews, 16, 2100291(2022).

    [104] Li Y K, Zou Y, Liu S et al. Linear and nonlinear photonic spin Hall effect induced by analog circular birefringence of Bessel-like beams[J]. Photonics Research, 11, 1553-1561(2023).

    [105] Gao N, Xie C Q. Parabolic scaling beams[J]. Optics Letters, 39, 3619-3622(2014).

    [106] Gao N, Xie C Q. Free space self-similar beams[J]. Optics Letters, 40, 1216-1219(2015).

    [107] Goutsoulas M, Bongiovanni D, Li D H et al. Tunable self-similar Bessel-like beams of arbitrary order[J]. Optics Letters, 45, 1830-1833(2020).

    [108] Li Y K, Zou Y, Guo Z J et al. Constructing arbitrary self-similar Bessel-like beams via transverse-longitudinal mapping[J]. Chinese Optics Letters, 22, 022601(2024).

    [109] Wang Y J, Li X Z, Li H H et al. Research progress of perfect vortex field[J]. Laser & Optoelectronics Progress, 54, 090007(2017).

    [110] Li X Z, Ma H X, Yin C L et al. Controllable mode transformation in perfect optical vortices[J]. Optics Express, 26, 651-662(2018).

    [111] Zhu J A, Zhang H, Wang Z Y et al. Coherence singularity and evolution of partially coherent Bessel-Gaussian vortex beams[J]. Optics Express, 31, 9308-9318(2023).

    [112] Yang Y J, Zhu X L, Zeng J et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation[J]. Nanophotonics, 7, 1679-1686(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yanke Li, Sheng Liu, Peng Li, Bingyan Wei, Dandan Wen, Jianlin Zhao. Progress in Propagation Control of Non-Diffracting Bessel Beams (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Dec. 15, 2023

    Accepted: Jan. 30, 2024

    Published Online: Apr. 26, 2024

    The Author Email: Liu Sheng (shengliu@nwpu.edu.cn), Zhao Jianlin (jlzhao@nwpu.edu.cn)

    DOI:10.3788/AOS231943

    Topics