Acta Optica Sinica, Volume. 37, Issue 6, 619001(2017)

Periodically Lumped Amplification and Recovery of Soliton in Dispersion-Decreasing Optic Fiber Link

Wang li1, Yang Rongcao1, Jia Heping1, Tian Jinping2, and Xue Wenrui1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] Takachio N, Suzuki H. Application of Raman-distributed amplification to WDM transmission systems using dispersion-shifted fiber[J]. Journal of Lightwave Technology, 2001, 19(1): 60-69.

    [2] [2] Diaz S, Abad S, Lopez-Amo M. Fiber-optic sensor active networking with distributed erbium-doped fiber and Raman amplification[J]. Laser& Photonics Reviews, 2008, 2(6): 480-497.

    [3] [3] Bednyakova A E, Fedoruk M P, P Harper, et al. Hybrid gain-flattened and reduced power excursion scheme for distributed Raman amplification[J]. Optics Express, 2013, 21(24): 29140-29144.

    [4] [4] Jia X H, Rao Y J, Wang Z N, et al. Distributed Raman amplification using ultralong fiber laser with a ring cavity: characteristics and sensing application[J]. Optics Express, 2013, 21(21): 21208-21217.

    [5] [5] Agrawal G P. Nonlinear fiber optics[M]. Amsterdam: Elsevier, 2003.

    [6] [6] Vizoso B, Matías I R, Lpez-Amo M, et al. Design and application of double amplified recirculating ring structure for hybrid fiber buses[J]. Optical and Quantum Electronics,1996, 27(10): 847-857.

    [7] [7] Menashea D, Bayartb D, Borneb S. Lumped Raman fiber amplifiers based on highly non-linear photonic crystal fiber[C]. Proc.SPIE, 2008, 6990: 699008.

    [8] [8] Aysha Muhsina K, Subha P A. Spatial solitons in a medium with lumped amplification and dissipation[J]. Journal of Nonlinear Optical Physics & Materials, 2015 24(1): 1550011.

    [9] [9] Chang C C, Weiner A M, Vengsarkar A M, et al. Broadband fiber dispersion compensation for sub-100-fs pulses with a compression ratio of 300[J]. Optics Letters,1996, 21(15): 1141-1143.

    [10] [10] Tang Y X, Liu Z W, Fu W, et al. Self-similar pulse evolution in a fiber laser witha comb-like dispersion-decreasing fiber[J]. Optics Letters, 2016, 41(10): 2290.

    [11] [11] Richardson D J, Chamberlin R P, Dong L, et al. High quality soliton loss-compensation in 38 km dispersion-decreasing fiber[J]. Electronics Letters, 1995, 31(19): 1681-1682.

    [12] [12] Stentz A J, Boyd R W, Evans A F. Dramatically improved transmission of ultrashort solitons through 40 km of dispersion-decreasing fiber[J]. Optics Letters, 1995, 20(17): 1770-1772.

    [13] [13] Richardson D J, Dong L, Chamberlin R P, et al. Periodically amplified system based on loss compensating dispersion decreasing fiber[J]. Electron Letter,1996, 32(4): 373-374.

    [14] [14] Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrdinger equation model[J]. Physical Review Letters, 2000, 85(21): 4502-4505.

    [15] [15] Serkin V N, Belyaeva T L. Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management[J]. Quantum Electronics, 2001, 31(11): 1007-1015.

    [16] [16] Kruglov V I, Peacock A C, Harvey J D. Exactself-similar solutions of the generalized nonlinear Schrdinger equation with distributed coefficients[J]. Physical Review Letters, 2003, 90(11): 113902.

    [17] [17] Hao R Y, Li L, Li Z H, et al. A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrdinger equation with variable coefficients[J]. Optics Communications, 2004, 236(1-3): 79-86.

    [18] [18] Yang R C, Hao R Y, Li L, et al. Exact gray multi-soliton solutions for nonlinear Schrdinger equation with variable coefficients[J]. Optics Communications, 2005, 253(1-3): 177-185.

    [19] [19] Hu Wencheng, Zhang Jiefang, Huang Wenhua, et al. Transmission control of line optical rogue waves in two-dimension graded-index waveguides[J]. Acta Optica Sinica, 2015, 35(7): 0719001.

    [20] [20] Li M,Tian B, Liu W J, et al. Soliton-like solutions of a derivative nonlinear Schrdinger equation with variable coefficients in inhomogeneous optical fibers[J]. Nonlinear Dynamics, 2010, 62(4): 919-929.

    [21] [21] Chai H P, Tian B, Wang Y F, et al. Analytic study on the generalized (3+1)-dimensional nonlinear Schrdinger equation with variable coefficients in the inhomogeneous optical fiber[J]. Nonlinear Dynamics, 2015, 80(3): 1557-1564.

    [22] [22] Dai C Q, Yang Q, He J D, et al. Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrdinger equation with variable coefficients[J]. The European Physical Journal D, 2011, 63(1): 141-148.

    [23] [23] Dai C Q, Wang Y, Liu J. Spatiotemporal Hermite-Gaussian solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrdinger equation[J]. Nonlinear Dynamics, 2016, 84(3): 1157-1161.

    Tools

    Get Citation

    Copy Citation Text

    Wang li, Yang Rongcao, Jia Heping, Tian Jinping, Xue Wenrui. Periodically Lumped Amplification and Recovery of Soliton in Dispersion-Decreasing Optic Fiber Link[J]. Acta Optica Sinica, 2017, 37(6): 619001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nonlinear Optics

    Received: Jan. 16, 2017

    Accepted: --

    Published Online: Jun. 8, 2017

    The Author Email:

    DOI:10.3788/aos201737.0619001

    Topics