Laser & Optoelectronics Progress, Volume. 50, Issue 9, 91002(2013)

Multi-Image Encryption Based on Wavelet Transform and Fractional Fourier Transform

Kong Dezhao1、*, Shen Xueju1, Lin Chao1, and Gao Yuchen2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(21)

    [1] [1] G Unnikrishnan, J Joseph, K Singh. Optical encryption by double-random phase encoding in the fractional Fourier domain [J]. Opt Lett, 2000, 25(12): 887-889.

    [2] [2] Liu Shutian, Yu Li, Zhu Banghe. Optical image encryption with multi-stage and multi-channel fractional Fourier domain filtering [J]. Opt Lett, 2001, 26(15): 1242-1244.

    [3] [3] Liu Zhengjun, Zhao Haifa, Liu Shutian. A discrete fractional random transform [J]. Opt Commun, 2005, 255(4-6): 357-365.

    [4] [4] Liu Zhengjun, Guo Qing, Liu Shutian. The discrete fractional random cosine and sine transforms [J]. Opt Commun, 2006, 265(1): 100-105.

    [5] [5] Jin Weimin, Yan Caijie. Optical image encryption based on multi-channel fractional Fourier transform and double random phase encoding technique [J]. Optik, 2007, 118(1): 1138-1141.

    [9] [9] Tao Ran, Lang Jun, Wang Yue. Optical image encryption based on the multiple-parameter fractional Fourier transform [J]. Opt Lett, 2008, 33(6): 581-583.

    [10] [10] Tao Ran, Lang Jun, Wang Yue. The multiple-parameter fractional Hadamard transform [J]. Opt Commun, 2009, 282(8): 1531-1535.

    [11] [11] Xi Sixing, Sun Xin, Liu Bing, et al.. New image encryption technology of image based on computer generated hologram [J]. Laser & Optoelectronics Progress, 2012, 49(4): 040902

    [13] [13] Ma Guohong, Wang Congyang, Ze Hong. A seam image processing method based on wavelet compress [J]. Appl Mech Mater, 2012, 472-475: 1353-1356.

    [14] [14] Zhou Houkui. An stationary wavelet transform and curvelet transform based infrared and visible images fusion algorithm [J]. Int J Digit Content Technol Appl 2012, 6(1):144-151.

    [15] [15] R A Maestre, J Garcia, C Ferreira. Pattern recognition using sequential matched filtering of wavelet coefficients[J]. Opt Commun, 1997, 133(1-6): 401-414.

    [16] [16] David Mendlovic. Continuous two-dimensional on-axis optical wavelet transformer and wavelet processor with white-light illumination [J]. Appl Opt, 1998, 37(8): 1279-1282.

    [17] [17] S P Kozaitis, M A Getbehead. Optical wavelet feature extraction using a multiple-input phase-only encoded joint-transform correlator [J]. Opt Commun, 1998, 151(1-3): 15-20.

    [18] [18] Chen Linfei, Zhao Daomu. Optical image encryption based on fractional wavelet transform [J]. Opt Commun, 2005, 254(4-6): 361-367.

    [19] [19] Chen Linfei, Zhao Daomu. Color image encoding in dual fractional Fourier-wavelet domain with random phases [J]. Opt Commun, 2009, 282(17): 3433-3438.

    [20] [20] D Mendlovic, N Konforti. Optical realization of the wavelet transform for two-dimensional objects [J]. Appl Opt, 1993, 32(32): 6542-6546.

    [21] [21] J Garcia, Z Zalevsky, D Mendlovic.Two-dimensional wavelet transform by wavelength multiplexing [J]. Appl Opt, 1996, 35(35): 7019-7024.

    CLP Journals

    [1] Zhu Wei, Yang Geng, Chen Lei, Chen Zhengyu. An Improved Image Encryption Algorithm Based on Double Random Phase Encoding and Chaos[J]. Acta Optica Sinica, 2014, 34(6): 607001

    [2] Yang Yuting, Zhang Tingrong, Gong Xia, Yang Qiang. Propagation of Bessel Beams Through a Spherical Aberration Fractional Fourier Transform System with Aperture[J]. Chinese Journal of Lasers, 2017, 44(12): 1205002

    Tools

    Get Citation

    Copy Citation Text

    Kong Dezhao, Shen Xueju, Lin Chao, Gao Yuchen. Multi-Image Encryption Based on Wavelet Transform and Fractional Fourier Transform[J]. Laser & Optoelectronics Progress, 2013, 50(9): 91002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 18, 2013

    Accepted: --

    Published Online: Aug. 21, 2013

    The Author Email: Kong Dezhao (xiaowu89511@126.com)

    DOI:10.3788/lop50.091002

    Topics