Computer Engineering, Volume. 51, Issue 8, 330(2025)
Multi-Branch and Multi-Scale Point Cloud Completion Network
[5] [5] LIU H B, JIA J Y, GONG N Z. Pointguard: provably robust 3D point cloud classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 6186-6195.
[8] [8] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 652-660.
[9] [9] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2023-11-01]. https://arxiv.org/pdf/1706.02413.
[10] [10] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto-encoder via deep grid deformation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 206-215.
[11] [11] YUAN W T, KHOT T, HELD D, et al. PCN: point completion network[C]//Proceedings of 2018 International Conference on 3D Vision (3DV). Washington D.C., USA: IEEE Press, 2018: 728-737.
[12] [12] WANG Y, SUN Y B, LIU Z Q, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[13] [13] HUANG Z, YU Y, XU J, et al. PF-Net: point fractal network for 3D point cloud completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 7662-7670.
[14] [14] XIANG P, WEN X, LIU Y S, et al. SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 5499-5509.
[15] [15] XIANG P, WEN X, LIU Y S, et al. Snowflake point deconvolution for point cloud completion and generation with skip-transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6320-6338.
[16] [16] WEN X, XIANG P, HAN Z, et al. PMP-Net: point cloud completion by learning multi-step point moving paths[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 7443-7452.
[17] [17] WEN X, XIANG P, HAN Z, et al. PMP-Net++: point cloud completion by transformer-enhanced multi-step point moving paths[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 852-867.
[18] [18] ZHAO H, JIANG L, JIA J, et al. Point transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 16259-16268.
[19] [19] PAN L, CHEN X Y, CAI Z Z, et al. Variational relational point completion network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 8524-8533.
[20] [20] PAN L, CHEW C M, LEE G H. PointAtrousGraph: deep hierarchical encoder-decoder with point atrous convolution for unorganized 3D points[EB/OL]. [2023-11-01]. https://arxiv.org/abs/1907.09798v2.
[21] [21] TCHAPMI L P, KOSARAJU V, REZATOFIGHI H, et al. TopNet: structural point cloud decoder[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 383-392.
[22] [22] WANG X G, ANG JR M H, LEE G H. Cascaded refinement network for point cloud completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 790-799.
[23] [23] PAN L. ECG: edge-aware point cloud completion with graph convolution[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4392-4398.
[24] [24] LIU M H, SHENG L, YANG S, et al. Morphing and sampling network for dense point cloud completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S. l.]: AAAI Press, 2020: 11596-11603.
[25] [25] XIE H Z, YAO H X, ZHOU S C, et al. GRNet: gridding residual network for dense point cloud completion[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 365-381.
[26] [26] YU X M, RAO Y M, WANG Z Y, et al. PoinTr: diverse point cloud completion with adaptive geometry-aware transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 1-9.
Get Citation
Copy Citation Text
CHEN Xiaolei, WANG Rong. Multi-Branch and Multi-Scale Point Cloud Completion Network[J]. Computer Engineering, 2025, 51(8): 330
Category:
Received: Dec. 6, 2023
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: CHEN Xiaolei (chenxl703@lut.edu.cn)